期刊文献+

彩色自然场景统计显著图模型 被引量:4

A Natural Scene Statistical Saliency Map Model for Color Images
原文传递
导出
摘要 提出了一种彩色图像自然场景统计显著图模型,它根据人类视觉系统对图像的处理方式,利用自然场景高斯尺度混合(GSM)统计分布中的乘数随机变量来计算图像灰度通道与彩色拮抗对的显著性描述,将三者的加权平均作为彩色图像的显著图.实验结果表明,彩色拮抗对通道的加入能够有效提高显著图模型与视觉注意力选择机制的一致性.对比不同模型提取的显著图,以及利用公开数据库计算得到的ROC曲线及该曲线下的面积(AUC),均表明本文显著图模型具有显著的优越性. A natural scene statistical saliency map model for color images is proposed. Based on the Gaussian scale mixture distribution of natural scene statistics, the multiplier variable in the Gaussian scale mixture distribution is extracted to model the saliency map of different channels of natural images, based on the processing mechanism of the human visual system. The experimental results prove that the consistency with the visual attention mechanism of human visual system is improved by combining the color double-opponent channels. The comparison results with the ROC (Receiver Operating Characteristics) curves and their AUC s (Area Under the Curve) of the images from the open databases demonstrate that the proposed saliency map model is better than those reported.
作者 黄虹 张建秋
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期51-58,65,共9页 Journal of Fudan University:Natural Science
基金 国家自然科学基金资助项目(61171127)
关键词 视觉注意力 显著图 自然场景统计分布 MAHALANOBIS距离 visual attention saliency map natural scene statistics Mahalanobis distance
  • 相关文献

参考文献23

  • 1Engelke U, Kaprykowsk H, Zepernick H J, et al. Visual attention in quality assessment[J]. SignalProcessing Magazine, IEEE, 2011,28(6).. 50-59.
  • 2Kowler E. Eye movements.. The past 25 years [J]. Vision Research, 2011,51(13): 1457-1583.
  • 3Carrasco M. Visual Attention: The past 25 years [J]. Vision Research, 2011,$1(13) : 1484-1525.
  • 4Treisman A M and Gelade G. A feature-integration theory of attention [J]. Cognitive Psychology, 1980, 12(1) : 97-136.
  • 5Wolfe J M, Cave K R, and Franzel S L. Guided search: An alternative to the feature integration model for visual search [J]. Journal of Experimental Psychology: Human perception and performance, 1989,15(3) : 419-433.
  • 6Koch C, Ullman S. Shifts in selective visual attention: towards the underlying neural circuitry [M]. Nether lands: Springer, Matters of Intelligence. 1987 : 115-141.
  • 7Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1998,20(11) : 1254 1259.
  • 8Walther D, Koch C. Modeling attention to salient proto-objects [J]. Neural Networks, 2006, 19(9): 1395-1407.
  • 9Ma Q, Zhang L. Saliency-based image quality assessment criterion. Advanced intelligent computing theories and applications, with aspects of theoretical and methodological issues[M]. Berlin Heidelberg: Springer, 2008: 1124-1133.
  • 10Toet A. Computational versus psychophysical bottom-up image saliency: A comparative evaluation study [J] Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2011,33(11) : 2131-2146.

同被引文献8

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部