期刊文献+

连通分次代数上投射模范畴的三角结构

Triangulated Structure of the Category of Projective Modules on the Connected Graded Algebra
原文传递
导出
摘要 首先将一般的Quasi-Frobenius环的刻画推广到分次Quasi-Frobenius环上.接下来,给出了投射模范畴有三角结构的连通分次代数的一个刻画.反之,当连通分次代数满足一定条件时,给出了投射模范畴的三角结构,并证明了这些三角结构全体和k中非零元素全体之间的一一对应关系.最后,证明了具有不同三角结构的投射模范畴作为三角范畴是等价的. Firstly, it characterizes the graded Quasi-Frobenius ring, then it also characterizes the connected graded algebra, for which the category of projective modules admits a triangulation. Conversely, under some assumptions on the connected graded algebra, a triangulated structure for the category of projective modules was constructed. Besides, there is a one to one correspondence between the set of all the triangulated structures of the category of projective modules and the set of nonzero elements in k. Finally, it was proved that the categories, of projective modules, with different triangulated structure are triangulated equivalent.
作者 傅宁
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期134-140,共7页 Journal of Fudan University:Natural Science
关键词 三角范畴 连通分次代数 投射模范畴 分次Quasi—Frobenius环 triangulated category connected graded algebra category of projective modules graded Quasi-Frobenius ring
  • 相关文献

参考文献7

  • 1Nfistfisescu C, Van Oystaeyen F. Methods of graded rings[M]. New York: Springer, 2004.
  • 2Neeman A. Triangulated categories[M]. Princeton, N J: Princeton University Press, 2001.
  • 3Neeman A. Some new axioms for triangulated categories[J]. J Algebra, 1991,139: 221-255.
  • 4Kasch F. Modules and rings[M]. New York: Academic Press, 1982.
  • 5Stenstrom B. Rings of quotients[M]. New York.. Springer-Verlag, 1975.
  • 6Hovey M, Loekridge K. Semisimple ring speetra[J]. New York J Math, 2009,15: 219-243.
  • 7Dimitrova B. Triangulated structures for projective modules[EB/OL]. (2009 - 12 - 23). http://arxiv org/abs/0912. 4708. ArXiv: 0912. 4708.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部