期刊文献+

基于CTM模型和最优标签集的图像标注 被引量:3

Image Annotation Based on CTM Model and Optimal Tag Sets
原文传递
导出
摘要 为了提高自动标注系统的性能,提出了一种基于最优标签集图像自动标注系统优化算法.用词袋模型表示图像,采用CTM模型进行图像标注,在此基础上,采用基于词频因子的词间相关性以及启发式迭代算法对获得的标注词进行有效的优化,提高了标注词的准确性.在Corel5K数据集中利用LDA模型和CTM模型进行图像标注对比实验,实验结果表明本文提出的图像标注方法能有效提高标注系统的性能. In order to improve the performance of automatic image annotation system, a new optimization method based on optimal tag sets is proposed. Firstly, the image is represented by bag-of-word and annotated by CTM model. Then, the correlation between words frequency factor and heuristic iterative algorithm is used to optimize the label set, which can improve the accuracy of label words greatly. Experiments on Corel5K dataset validate that the proposed method can offer better annotation effect than some other annotation methods, such an LDA and CTM model.
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期147-153,162,共8页 Journal of Fudan University:Natural Science
基金 国家自然科学基金项目(50808025) 湖南省科技计划项目(2012FJ3021) 湖南省教育科学"十二五"规划课题(XJK012CGD022) 湖南省普通高等学校教学改革研究资助课题(湘教通【2012】401号544)
关键词 CTM模型 LDA模型 潜在语义主题 最佳标签集 CTM model LDA model latent semantic topic optimal tag sets
  • 相关文献

参考文献16

  • 1鲍泓,徐光美,冯松鹤,须德.自动图像标注技术研究进展[J].计算机科学,2011,38(7):35-40. 被引量:21
  • 2温超,耿国华.基于内容图像检索中的“语义鸿沟”问题[J].西北大学学报(自然科学版),2005,35(5):536-540. 被引量:17
  • 3Mori Y, Takahashi H, Oka tL Image-to-word transformation based on dividing and vector quantizing images with words [C]///1st International Workshop on Multimedia Intelligent Storage and Retrieval Management, MISRM 99, Orlando, USA, 1999.
  • 4Duygulu P, Barnard K, Freitas J F G, et al. Object recognition as machine translation: Larning a lexicon for a fixed image vocabulary[M]//Computer Vision--ECOV 2002. Berlin Heidelberg: Springer, 2006: 97-112.
  • 5Jeon J, Lavrenko V, Manmatha tL Automatic image annotation and retrieval using cross-media relevance models[C]//Proceedings of the 26th annu/l international ACM SIGIR conference on Research and development in information retrieval. Toronto, Canada .. ACM, 2003.. 119-126.
  • 6Lavrenko V, Manmatha R, Jeon J. A model for learning the semantics of pictures [C] // Advances in Neural Information Processing Systems(NIPS. 03). Vancouver, Canada.. NIPS, 2003.- 553-560.
  • 7Feng S L, Manmatha R, Lavrenko V. Multiple-Bgrnoulli relevance models for image and video annotation [C]//The 2004 IEEE Computer Society Conference on Computer Vision and Pattern RecognitiorL Washington D C, USA.. CVPR, 2004,2(2).. 1002-1009.
  • 8Pan J Y, Yang H J, Faloutsos C, et al. Automatic multimedia cross-modal correlation discovery[C] // Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. New York, USA: ACM Press, 2004.. 653-658.
  • 9Liu J, Li M J, Ma W Y, etal. An adaptive graph model for automatic image annotation[C]//Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval. Santa Barbara, California, USA: MIR 2006, October 26-27, 2006.. 61-70.
  • 10Lowe D. Distinctive image features from scaleinvariant key points [J]. International Journal of Computer Vision, 2004,60(2) .. 91-110.

二级参考文献62

  • 1Cusano C, Ciocca G, Sehettini R. Image annotation using SVM [C] ff Proc. of Int. SPIE Conf. on Imaging IV. San Jose, CA, USA, Feb. 2004 : 330-338.
  • 2Lu Zhi-wu, Horace H S I, He Qi-zhen. Context-based multi-label image annotation [C]//Proceeding of the ACM International Conference on Image and Video Retrieval. Santorini, Fira, Greece, July 2009.
  • 3Maron O, Lozano-Perez T. Multiple-instance learning for natural scene elassification[C] // Proe. of Int. Conf. on Machine Learning (ICML'98). Madison,Wisconsin,USA,July 1998..341-349.
  • 4Yang C, Dong M, Fotouhi F. Region-based image annotation through multiple instance learning[C] //Proc, of ACM Conf. on Multimedia (ACM MM'05). Singapore,Nov. 2005:435 438.
  • 5Yang C, Dong M, Hua J. Region-based image annotation using asymmetrical support vector machine-based multiple-instance learning[C]//Proc, of IEEE Int. Conf. on Computer Vision and Pattern Recognition (CVPR' 06). New York, USA, June 2006 : 2057 2063.
  • 6Gustavo C, Nuno V. A database centric view of semantic image annotation and retrieval[C]//Proc, of Int. ACM SIGIR Conf. on Retrieval (ACM SIGIR~05). Salvador,Brazil, Aug. 2005:559-566.
  • 7Carneiro G, Chan A B, Moreno P J, et al. Supervised learning of semantic classes for image annotation and retrieval [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29 (3) :394-410.
  • 8Qi X, Han Y. Incorporating multiple SVMs for automatic image annotation[J]. Pattern Recognition, 2007,40 (2) : 728-741.
  • 9Tang J H, Hua X, Qi G, et al. Typicality ranking via semi-super- vised multiple-instance leaming[C] // Proc. of ACM Conf. on Multimedia ( ACM MM ' 07 ). Augsburg, Germany, Sep. 2007 : 297-300.
  • 10Feng Song-he, Xu De. Transductive Multi-Instance Multi-Label Learning Algorithm with Application to Automatic Image An- notation[J]. Expert Systems with Applications, 2010,37 (1): 661-670.

共引文献35

同被引文献39

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部