期刊文献+

删失数据非线性回归模型的广义M估计

GENERALIZED M-ESTIMATION FOR NONLINEAR CENSORED REGRESSION
下载PDF
导出
摘要 加速失效模型(AFT模型)是研究失效时间和协变量间相互关系的一类重要模型.在标准的AFT模型中,假设对数变换后的生存时间与协变量间是线性关系,本文将线性关系扩展到非线性,在广义M估计的目标函数中使用Kaplan-Meier权,提出右删失数据非线性回归模型的加权广义M估计.我们还得到了广义M估计的渐近性和相合性,并且通过模拟研究验证了该方法在有限样本情形下估计效果良好. Accelerated failure time model is an important regression tool to study association between failure time and co^variates. In standard accelerated lifetime model, log lifetime is a linear function of co- variable vector. This model is now extended to admit general nonlinear functional relationships. We propose a robust weighted generalized M-estimation for nonlinear regression with right-censored data using the Kaplan- Meier weights in the generalized M type objective function to estimate regression coefficients and scale parameter simultaneously. Asymptotic properties including the root-n consistency and asymptotic normality are established for the resulting estimator under suitable conditions. Simulations suggest that the proposed estimator has good finite sample performance in comparison with existing robust estimators.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第1期1-6,共6页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(11071022 11028103 11231010 11201317)
关键词 非线性回归 广义M估计 Kaplan-Meier权 右删失 影响函数 influence function nonlinear regression generalized M-estimator kaplan-meier weights~ right censored~
  • 相关文献

参考文献17

  • 1Ying Z L. A large sample study of rank estimation for cenosored regression data[J]. Annals of Statistics, 1993, 21:76 J.
  • 2in Z, Lin D Y, Wei L J, et al. Rank-based inference for the accelerated Failure Time Model [J]. Biometrika, 2003, 90:341.
  • 3Ying Z L, Jung S H, Wei L J. Survival analysis with median regression models [J]. Journal of Statistical Planning and Inference, 1995, 90: 178.
  • 4Huang J, Ma S, Xie H. Least absolute deviations estimation for the Accelerated Failure Time Model [J]. Statistics Sinica, 2007, 17:1533.
  • 5He X, Fung W K. Method of medians for lifetime data with Weibull models [J]. Statistics in Medicine, 1999, 18.. 1993.
  • 6Ritov Y. Estimation in a linear regression model with censored data[J]. Annals of Statistics, 1990, 18:303.
  • 7Lai T L, Ying Z L. A missing information principle and M-estimator in regression analysis with censored and truncated data[J]. Annals of Statistics, 1994, 22:1222.
  • 8Jin Z. M-estimation in regression models for censored data[J]. Journal of Statistical Planning and inference,2007, 137: 3894.
  • 9Zhou W. M-estimation of the accelerated failure time model under a convex discrepancy function[J]. Journal of Statistical Planning and Inference, 2010, 140:2669.
  • 10Seber G A F, Wild C J. Nonlinear regression [M]. New York..John Wiley, 1989.

二级参考文献13

  • 1Hampel F R,Ronchetti E M,Rousseeuw P J,et al.Robust Statistics.New York:John Wiley & Sons,1986
  • 2Rousseeuw P J,Yohai V.Robust Regression by Means of S-estimators.In:Robust and Nonlinear Time Series Analysis.Berlin,New York:Springer-Verlag,1984.256-272
  • 3He X.A local breakdown property of robust tests in linear regression.Journal of Multivariate Analysis,1991,38:294-305
  • 4Maronna R A,Yohai V J.Asymptotic behavior of general M-estimates for regression and scale with random carries.Z Wahr Ver Geb,1981,58:7-21
  • 5Simpson D G,Rupprt D,Carroll R J.On one-step GM estimates and stability of inferences in linear regression.Journal of the American Statistical Association,1992,87:439-450
  • 6Simpson D G,Yohai V J.Functional stability of one-step GM-estimators in approximately linear regression.Ann Statist,1998,26:1147-1169
  • 7He X,Simpson D G,Wang G Y.Breakdown points oft-type regression estimators.Biometrika,2000,87:675-687
  • 8He X,Cui H,Simpson D G.Longitudinal data analysis using t-type regression.Journal of Statistical Planning and Inference,2004,122:253-269
  • 9Dempster A P,Laird N M,Rubin D B.Maximum likelihood from incomplete data via the EM algorithm(with Discussion).J R Statist Soc,1977,B39:1-38
  • 10Little R J A.A test of missing completely at random for multivariate data with missing values.J Amer Statist Assoc,1988,83:1198-1202

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部