期刊文献+

基于PSO的协同过滤推荐算法研究 被引量:5

Research on collaborative filtering recommendation method based on PSO algorithm
下载PDF
导出
摘要 协同过滤是推荐系统中最有效的方法之一,推荐算法评分预测的精确性受到最近邻居的提取以及项目或用户相似度计算的两个关键点的影响。根据用户行为相似性原理,采用最大交集法提取与当前项目共同评分最多的邻居作为最佳邻居候选集,同时提出了加权余弦相似性方法对相似度进行计算,并采用粒子群优化算法(PSO)对权重进行优化求解。实验结果表明,采用上述方法相对于传统方法来说,能较好地改善评分预测的精确度,有效地提高推荐系统的推荐质量。 Collaborative filtering is one of the most effective way in the recommended system. The forecast accuracy of recommendation algorithm depends on two key points:the extraction of the nearest neighbors and the calculation of proj-ect/user similarity. The paper extracts rated most neighbors with the current project as a nearest neighbor candidate set, and proposes a weighted cosine similarity method to calculate the project/user similarity, then optimizing the weight by the Particle Swarm Optimization(PSO)algorithm. The experimental results show that using these methods can efficiently improve the accuracy of the score predicted, and provide better recommendation results than traditional collaborative filtering algorithms.
出处 《计算机工程与应用》 CSCD 2014年第5期101-107,共7页 Computer Engineering and Applications
基金 上海市科学技术委员会科研计划项目(No.13dz1508402)
关键词 推荐系统 粒子群算法 协同过滤 PARTICLE SWARM Optimization(PSO) recommended system collaborative filtering
  • 相关文献

参考文献18

  • 1Sarwar B,Karypis G,Riedl J.Item-based collaborative filtering recommendation algorithms[C]//Proc 10th Int'l World Wide Web Conference.New York: ACM Press, 2001:285-295.
  • 2Adomavicius G, Tuzhilin A.Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowl- edge and Data Engineering,2005,17(6).
  • 3Breese J S, Heckerman D, Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[C]// Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, 1998:43-52.
  • 4Su X, Khoshgoftaar T M.A survey of collaborative filter- ing techniques[J].Advances in Artificial Intelligence,2009.
  • 5邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558
  • 6张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 7Vucetic S, Obradovic Z.Collaborative filtering using a regression-based approach[J].Knowledge and Information Systems,2005,7( 1 ) : 1-22.
  • 8赵亮,胡乃静,张守志.个性化推荐算法设计[J].计算机研究与发展,2002,39(8):986-991. 被引量:140
  • 9Rennie J D M, Srebro N.Fast maximum margin matrix factorization for collaborative prediction[C]//Proceedings of the 22nd International Conference on Machine Learning. New York:ACM Press,2005 : 713-719.
  • 10DeCoste D.Collaborative prediction using ensembles of maximum margin matrix factorizations[C]//Proceedings of the 23rd Intemational Conference on Machine Learning. New York:ACM Press,2006:249-256.

二级参考文献56

共引文献1152

同被引文献37

  • 1古能平.关于茶叶分类的几点认识[J].消费导刊,2008,0(17):198-198. 被引量:3
  • 2Breese J,Hecherman D,Kadie C.Empirical Analysis of Predictive Algorithms for Collaborative Filtering[C]∥In:Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence(UAI’98).[s.1.]:[s.n.],1998:43-52.
  • 3Guo G.Improving the Performance of Recommender Systems by Alleviating the Data Sparsity and Cold Start Problems[C]∥Proceedings of the 23rd International Conference on Artificial Intelligence,IJCAI 2013DC.
  • 4Karaboga D.An Idea Based on Honey Bee Swarm for Numerical Optimization[R].Kayseri:Erciyes University,2005.
  • 5Karaboga D,Basturk B.A Powerful and Efficient Algorithm for Numerical Function Optimization:Artificial Bee Colony(ABC)Algorithm[J].Journal of Global Optimization,2007,39(3):459-471.
  • 6Karaboga D,Akay B.A Comparative Study of Artificial Bee Colony Algorithm[J].Applied Mathematics and Computation,2009,214(1):108-132.
  • 7Karaboga D,Ozturk C,Karaboga N,et al.Artificial Bee Colony Programming for Symbolic Regression[J].Information Sciences,2012,209(11):1-15.
  • 8汪静,印鉴,郑利荣,黄创光.基于共同评分和相似性权重的协同过滤推荐算法[J].计算机科学,2010,37(2):99-104. 被引量:45
  • 9徐翔,王煦法.协同过滤算法中的相似度优化方法[J].计算机工程,2010,36(6):52-54. 被引量:37
  • 10黄创光,印鉴,汪静,刘玉葆,王甲海.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. 被引量:217

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部