期刊文献+

自适应嵌套级联的在线集成学习方法研究

Research on online ensemble learning methods based on adaptive nesting-strutted cascade
下载PDF
导出
摘要 针对视频目标检测问题,提出一种新的在线集成学习方法。该方法把目标检测看成两类分类问题,首先用少量已标注样本离线训练一个初始集成分类器,然后在检测目标的同时通过跟踪过滤虚警目标,并通过样本置信度作进一步验证自动标注样本,最后通过在线集成学习方法更新级联分类器。该方法通过在线调整级联分类器,提高分类器对目标环境变化的适应能力,在大量视频序列上进行实验验证,并与现有在线集成学习方法进行比较,结果表明,通过该方法训练得到的检测器不但能够很好地应对目标特征的变化,也能在出现目标遮挡及背景干扰下稳定地检测出目标,具有较好的适应性及鲁棒性。 A new online ensemble learning method is proposed for object detection in video. In this method, object detec-tion is considered as two-class classification problem. Firstly, an off-line primed ensemble classifier should be trained with a few labeled samples, and then the false alarm targets will be filtered by tracking while detecting the objects, at the same time, the automatically labeled samples will be further validated by the sample confidence, finally the cascade classi-fier can be updated by the online ensemble learning algorithm. The adaptability of the proposed method is improved by online adjusting the cascade classifier. Based on the detection results of video sequences, comparing with existing online ensemble learning methods, the detector trained by the proposed approach is adaptive and robust. It can adapt to features changes of the objects, detect objects in partial occlusion or cluttered background.
出处 《计算机工程与应用》 CSCD 2014年第5期169-174,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61075032 No.60575023)
关键词 在线学习 集成学习 目标检测 GENTLE ADABOOST算法 online learning ensemble learning object detection Gentle AdaBoost algorithm
  • 相关文献

参考文献12

  • 1Dienerieh T G.Machine learning research: four current directions[J].Al Magazine, 1997,18 (4) : 97-136.
  • 2Hampshire J B, Waibel A H.A novel objective function for improved phoneme recognition using time-delay neu- ral networks[J].IEEE Transactions on Neural Networks, 1990,1 (2) :216-228.
  • 3Viola P, Jones M.Rapid object detection using a boosted cascade of simple features[C]//Proeeedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, Hawaii, USA, 2001 : 511-518.
  • 4贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 5Oza N C.Online ensemble learning[D].Berkeley: Depart- ment of Electrical Engineering and Computer Science,University of California, 2001.
  • 6Oza N C, Russell S.Online bagging and boosting[C]// Proceedings of the 8th International Workshop on Artifi- cial Intelligence and Statistics,2001 : 105-112.
  • 7Grabner H, Bisehof H.On-line boosting and vision[C]// Proceedings of the 2006 IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition, 2006 : 260-267.
  • 8Javed O,Ali S, Shah M.Online detection and classifica- tion of moving objects using progressively improving detectors[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005 : 696-701.
  • 9Leistner C, Grabner H.Semi-supervised boosting using visual similarity learning[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008 : 1-8.
  • 10Wu B, Ai H, Huang C, et al.Fast rotation invariant multi-view face detection based on real adaboost[C]// Proceedings of the 6th IEEE International Conference on Automatic Face and Gesture Recognition, 2004 : 79-84.

二级参考文献42

  • 1Gavrila D M, Giebel J, Munder S. Vision-based pedestrian detection: the protector system. In: Proceedings of IEEE Intelligent Vehicles Symposium. Parma, Italy. IEEE, 2004. 13-18
  • 2Tons M, Doerfler R, Meinecke M M, Obojski M A. Radar sensors arid sensor platform used for pedestrian protection in the EC-funded project SAVE-U. In: Proceedings of IEEE Intelligent Vehicles Symposium. Parma, Italy. IEEE, 2004. 813-818
  • 3Broggi A, Bertozzi M, Fascioli A, Sechi M. Shape-based pedestrian detection. In: Proceedings of IEEE Intelligent Vehicles Symposium. Dearborn, USA. IEEE, 2000. 215-220
  • 4Shashua A, Gdalyahu Y, Hayun G. Pedestrian detection for driving assistance systems: single-frame classification and system level performance. In: Proceedings of IEEE Intelligent Vehicles Symposium. Parma, Italy. IEEE, 2004. 1-6
  • 5Xu Feng-Liang, Liu Xia, Fujimura K. Pedestrian detection and tracking with night vision. IEEE Transactions on Intelligent Transportation Systems, 2005, 6(1): 63-71
  • 6Zhao Liang, Thorpe C. Stereo and neural network-based pedestrian detection. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(3): 148-154
  • 7Oren M, Papageorgiou C, Sinha P, Osuna E, Poggio T.Pedestrian detection using wavelet templates. In: Proceed-ings of IEEE Conference on Computer Vision and Pattern Recognition. San Juan, Puerto Rico. IEEE, 1997. 193-199
  • 8Mohan A, Papageorgiou C, Poggio T. Example-based object detection in images by components. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(4):349-361
  • 9Cheng Hong, Zheng Nan-Ning, Qin Jun-Jie. Pedestrian detection using sparse Gabor filter and support vector machine. In: Proceedings of IEEE Intelligent Vehicles Sympo-sium. Vienna, Austria. IEEE, 2005. 583-587
  • 10Sun Hui, Hua Cheng-Ying, Luo Yu-Pin. A multi-stage classifter based algorithm of pedestrian detection in night with a near infrared camera in a moving car. In: Proceedings of 3rd IEEE International Conference on Image and Graphics.Hong Kong, China. IEEE, 2004. 120-123

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部