期刊文献+

一种梯度交替迭代设计测量矩阵的方法 被引量:1

Gradient alternating iterative approach for designing measurement matrix
下载PDF
导出
摘要 在压缩采样中,测量矩阵应该和表达字典有尽可能小的相干性,随机测量矩阵一直被使用是因为其和任何表达字典都有较小的相干性。提出一种基于梯度迭代最小化方法,作为格拉斯曼框架设计的一种变体,通过优化一个初始的随机测量矩阵来得到相干性更小的测量矩阵。仿真结果表明所设计的测量矩阵具有更好的性能。 In compressive sampling, measurement matrices should have very small coherence with the sparsity basis. Ran-dom measurement matrices have been used since they present small coherence with almost any sparsity basis. This paper proposes a gradient-based alternating minimization approach which is a variant of Grassmannian frame designing. The purpose is to optimize an initially random measurement matrix to a matrix which presents a smaller coherence than the ini-tial one. The simulation results prove that measurement matrix generated by the proposed method has better performance.
出处 《计算机工程与应用》 CSCD 2014年第6期197-199,234,共4页 Computer Engineering and Applications
关键词 压缩采样 测量矩阵 等角紧框架 梯度下降 稀疏性 compressed sensing measurement matrix Equiangular Tight Frame(ETF) gradient descent sparsity
  • 相关文献

参考文献16

  • 1Donoho D.Compressed sensing[J].IEEE Transactions on Information Theory, 2006,52 (4) : 1289-1306.
  • 2Candes E J, Wakin M B.An introduction to compressive sampling[J].IEEE Signal Processing Magazine, 2008,25 (2):21-30.
  • 3Romberg J.Imaging via compressing sampling[J].IEEE Signal Processing Magazine,2008,25(2). 14-20.
  • 4Rauhut H,Schnass K,Vandergheynst P.Compressed sens- ing and redundant dictionaries[J].IEEE Transactions on Information Theory, 2008,54 ( 5 ) : 2210-2219.
  • 5DeVore R.Deterministic constructions of compressed sensing matrices[J].Journal of Complexity, 2007,23 (4-6) : 918-925.
  • 6Haupt J, Bajwa W U, Raz G,et al.Toeplitz compressed sensing matrices with applications to sparse channel esti- mation[J].IEEE Transactions on Information Theory, 2010, 56( 11 ) :5862-5875.
  • 7Candes E, Tao T.Near optimal signal recovery from random projections:universal encoding strategies[J].IEEE Transac- tions on Information Theory, 2006,52(12) : 5406-5425.
  • 8Candes E J.Compressive sampling[C]//Proceedings of the International Congress of Mathematicians, Madrid, 2006. 1433-1452.
  • 9石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 10Tropp J A, Gilbert A C.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEETransactions on Information Theory, 2007, 53 (12) : 4655-4666.

二级参考文献83

  • 1ZHANG Chunmei,YIN Zhongke,CHEN Xiangdong,XIAO Mingxia.Signal overcomplete representation and sparse decomposition based on redundant dictionaries[J].Chinese Science Bulletin,2005,50(23):2672-2677. 被引量:14
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献734

同被引文献9

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部