期刊文献+

基于机器视觉的轴承防尘盖表面缺陷检测 被引量:20

Bearing shield surface defect detection based on machine vision
下载PDF
导出
摘要 为实现工业现场中轴承防尘盖表面缺陷的自动检测,提出一种基于机器视觉技术的检测方法。采用蓝色同轴光源作为检测系统所用光源,克服金属反光;采用最小二乘法拟合轴承外圆,根据轴承型号比例分割出防尘盖区域,利用Otsu阈值分割和Roberts边缘提取处理图像,每2°统计值为1的点的数目,与模板轴承此数据比较,求出相差角度,由此将防尘盖字符、非字符区域分离,两部分是否存在缺陷分开判别,互不干扰。实际测试表明:检测系统采集到的轴承图像清晰,缺陷检测算法正确率在96%以上,可实现轴承防尘盖表面缺陷的自动检测。 To realize the automatic detection of bearing shield surface, this paper proposes a method based on machine vision. It uses the blue coaxial light to overcome the metal reflection;it uses the least squares method to fit the bearing outer circle. According to the bearing type, it segments the bearing. Using Otsu’s method and Roberts edge extraction it processes the shield image. It calculates the points when value is 1 per 2°. Compared with the template data, it obtains the phase angle, then separates the character region and no-character region;there is no interference when the two parts defect is detected. Experiments show that:the captured image is unambiguous and the correct rate of detection algorithm is more than 96%. It can realize the automatic detection of bearing shield surface.
出处 《计算机工程与应用》 CSCD 2014年第6期250-254,共5页 Computer Engineering and Applications
基金 江苏高校优势学科建设工程资助项目 江苏省科技成果转化项目(No.BA2011032)
关键词 机器视觉 图像处理 轴承防尘盖 表面缺陷 自动检测 machine vision image processing bearing shield surface defect automatic detection
  • 相关文献

参考文献9

  • 1Satyanarayan L, Muralidharan A, Krishnamurthy C, et al. Application of a matched filter approach for finite aper- ture transducers for the synthetic aperture imaging of defects[J].IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2010,57 : 1368-1382.
  • 2Martins L A O, Padua F L C, Almeida P E M.Automaticdetection of surface defects puter vision and artificial on rolled steel using com- neural networks[C]//IECON 2010-36th Annual Conference on IEEE Industrial Elec- tronics Society, Glendale, 2010 : 1081-1086.
  • 3Yang Tiebin,Wang Liqin,Zheng Dezhi,et al.Image acqui- sition and segmentation for ceramic bearing ball surface inspection system[C]//Proceedings of the 6th World Con- gress on Intelligent Control and Automation, Dalian, China, 2006: 1005-1011.
  • 4Yazdi M, Yazdchi M, Mahyari L A O.Steel surface defect detection using texture segmentation based on multifractal dimension[C]//2009 International Conference on Digital Image Processing, Bangkok, 2009 : 346-350.
  • 5张扬,朱善安.基于小波及纹理特征的轴承防尘盖缺陷检测[J].计算机工程,2010,36(8):247-250. 被引量:10
  • 6陈廉清,崔治,王龙山.基于差影和模板匹配的微小轴承表面缺陷检测[J].中国机械工程,2006,17(10):1019-1022. 被引量:21
  • 7李杨.基于机器视觉和人工神经网络的微小轴承表面缺陷识别及检测技术研究[D].长春:吉林大学,2007.
  • 8徐煜明,韩雁.FPCB基准孔精确定位技术研究[J].计算机工程与应用,2009,45(29):233-236. 被引量:1
  • 9GONZALEZ R C.数字图像处理MATLAB版[M].阮秋琦,译.北京:电子工业出版社,2005.

二级参考文献16

共引文献29

同被引文献174

引证文献20

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部