期刊文献+

Sage-Husa随机加权无迹卡尔曼滤波及其在导航中的应用 被引量:4

Sage-Husa Random Weighting UKF and Its Application in Navigation
下载PDF
导出
摘要 在吸收Sage-Husa滤波和无迹卡尔曼滤波优点的基础上,利用随机加权估计算法将传统的定义在线性系统上的Sage-Husa噪声估计器推广到非线性系统中,提出一种非线性Sage-Husa随机加权无迹卡尔曼滤波算法。该算法首先利用Sage滤波的开窗平滑方法求得观测残差向量和新息(预测残差)向量的协方差阵;然后用随机加权自适应因子对观测残差和预测残差进行调节;最后对状态预报向量的协方差矩阵进行自适应随机加权估计,以控制观测残差和预测残差对导航精度的影响。计算结果表明,提出的非线性Sage-Husa随机加权无迹卡尔曼滤波算法,滤波精度明显优于无迹卡尔曼滤波和自适应无迹卡尔曼滤波算法,能够提高组合导航的解算精度。 On the basis of absorbing the advantage of Sage-Husa filtering and unscented Kalman filtering, this paper uses random weighting estimation to extend the traditional Sage-Husa noise estimation defined in linear system to nonlinear system and a nonlinear Sage-Husa random weighting unscented Kalman filtering method is presented. This method adopts Sage filtering window smoothing method to obtain the eovariance matrix of observation residual vector and innovation (prediction residual) vector. Then, observation residual and prediction residual are adjusted by using random weighting adaptive factor. Finally, the covariance matrix of state prediction vector is estimated by using adaptive random weighting estimation to control the effect of observation residual and prediction residual on navigation accuracy. Experimental results demonstrate that the proposed Sage-Husa random weighting UKF is obviously better than unscented Kalman filtering and adaptive unscented Kalman filtering and the proposed method can improve the accuracy of integrated navigation.
出处 《导航定位学报》 2014年第1期77-81,86,共6页 Journal of Navigation and Positioning
关键词 组合导航 随机加权估计 Sage-Husa滤波 无迹卡尔曼滤波 integrated navigatiom random weighting estimation Sage-Husa filtering unscented Kalman filtering
  • 相关文献

参考文献2

二级参考文献20

  • 1Yang Y X, He H B, Xu G C. Adaptively robust filtering for kinematic geodetic positioning. Journal of Geodesy 2001; 75(2): 109-116.
  • 2Wang J, Stewart M P, Tsakiri M. Adaptive Kalman illtering for integration of GPS with GLONASS and INS. Birmingham: IUGG/IAG. 1999; 18-31.
  • 3Ding W, Wang J, Rizos C, et al. Improving adaptive Kalman estimation in GPS/INS integration. The Journal of Navigation 2007; 60(3): 517-529.
  • 4Mohamed A H, Schwarz K P. Adaptive Kalman filtering for INS/GPS. Journal of Geodesy 1999; 73(4): 193-203.
  • 5Yang Y X, Xu T. An adaptive Kalman filter based on Sage windowing weights and variance components. The Journal of Navigation 2003; 56(2): 231-240.
  • 6Jazwinski A H. Stochastic processes and filtering theory. New York: Mathematics in Science and Engineering, Academic Press, 1970.
  • 7Mehra R K. On the identification of variances and adaptive Kalman filtering. IEEE Transactions on Automatic Control 1970; 15(2): 175-184.
  • 8Gao S S, Jiao Y L, Gu Y, et al. Error-resistant adaptive.filtering for INS/SAR integrated navigation system. 2nd International Congress on Image and Signal Processing. 2009; 3898-3901.
  • 9Gao S S, Zhong Y M, Zhang X Y, et al. Multi-sensor optimal data fusion for INS/GPS/SAR integrated navigation system. Aerospace Science and Technology 2009; 13(4-5): 232-237.
  • 10Gao S s," Zhong Y M, Li W. Robust adaptive filtering method for S1NS/SAR integrated navigation system. Aerospace Science and Technology. doi: 10.1016/j.ast. 2010.08.007.

共引文献25

同被引文献31

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部