摘要
Spectral technology has become an important detection method due to its advantages such as non- intrusive measurement and on-line analysis. In this paper, two applications of spectral technology in thermal detection were proposed. First, a novel spectroscopic method based on Planck's law for measurement of emissivity was introduced. The emissivity, obtained by comparing the radiation intensity of the blackbody which had the same temperature as the flame with the detected intensity of the flames, could be used for on-line measurements and had a relatively higher upper tempera- ture limit. Then, a spectroscopic method for composition detection of blended fuels was proposed based on the emissivity measured. By comparing the spectra of blended fuels and single fuels, the ratio of single fuels of the blended fuel could be calculated. The measurement system proposed in this paper, which consists of a spectrometer and a computer, is very compact.
Spectral technology has become an important detection method due to its advantages such as non- intrusive measurement and on-line analysis. In this paper, two applications of spectral technology in thermal detection were proposed. First, a novel spectroscopic method based on Planck's law for measurement of emissivity was introduced. The emissivity, obtained by comparing the radiation intensity of the blackbody which had the same temperature as the flame with the detected intensity of the flames, could be used for on-line measurements and had a relatively higher upper tempera- ture limit. Then, a spectroscopic method for composition detection of blended fuels was proposed based on the emissivity measured. By comparing the spectra of blended fuels and single fuels, the ratio of single fuels of the blended fuel could be calculated. The measurement system proposed in this paper, which consists of a spectrometer and a computer, is very compact.