期刊文献+

利用蝴蝶形钢板剪力墙耗能的自复位结构体系研究 被引量:4

Research on self-centering system of energy consumption of steel shear walls with butterfly-shaped links
下载PDF
导出
摘要 应用ANSYS软件对利用蝴蝶形钢板剪力墙耗能的自复位结构体系进行了有限元模拟,主要研究了钢绞线预拉力值、蝴蝶板厚度、蝴蝶板中开缝区短柱高厚比L/t、蝴蝶板中开缝区短柱宽厚比b/t等参数对结构自复位能力、承载力、抗侧刚度、耗能能力以及延性性能的影响。分析结果表明,通过合理的参数设计,利用蝴蝶形钢板剪力墙耗能的自复位结构体系能够把塑性变形集中在蝴蝶板中,使框架梁柱处于弹性状态,在地震作用后没有残余变形,能够方便快速地修复;并且拥有较高的抗侧刚度、承载力,较强的耗能能力和较好的延性性能。钢绞线初始预拉力值对结构复位能力影响较大,蝴蝶板厚度以及蝴蝶短柱高厚比、宽厚比对结构抗侧刚度、承载力、耗能能力以及延性影响较大。 The paper presented the finite element simulation of the self-centering system of steel plate shear walls (SC-SPSW) with butterfly-shaped links by ANSYS, and studied the influence of the initial value of pretension of steel strand, the steel plate shear wall thickness, butterfly short column height to thickness ratio L/t, butterfly short columns width-thickness ratio b/t and other parameters on the self-centering ability, bearing capacity, lateral stiffness, energy dissipation capacity and ductility. The results show that, through the reasonable design of parameters, the self-centering system with steel plate shear wall with butterfly-shaped links can make the plastic deformation focus on the butterfly-shaped links and the columns in a elastic state, and then return to the initial state after earthquake; and also has high rigidity, strong bearing capacity, energy dissipation capacity and better ductility performance. The steel strand initial pretension value greatly influences the self-centering ability; and the thickness of the butterfly plate, the ratio of the butterfly short column height-thickness, the width-thickness ratio greatly influence the lateral stiffness of the structure, bearing capacity, energy dissipation capacity and ductility performance.
作者 经聪 李启才
出处 《苏州科技学院学报(工程技术版)》 CAS 2014年第1期44-50,共7页 Journal of Suzhou University of Science and Technology (Engineering and Technology)
基金 国家自然科学基金项目(51378326) 江苏省结构工程重点实验室开放课题(ZD1204)
关键词 蝴蝶形钢板剪力墙 滞回性能 自复位 预应力 有限元分析 steel plate shear wall with butterfly-shaped links hysteretic behavior self-centering prestressed finite element analysis
  • 相关文献

参考文献9

  • 1中国建筑科学研究院.GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
  • 2Garlock M. Full-scale testing,seismic analysis, and design of post tensioned seismic resistant connections for steel frames[D]. Lehigh University, Bethlehem, USA, 2002.
  • 3Garlock M, Ricles J M, Sause R. Experimental studies of full-scale posttensioned steel connections [J]. Journal of structural Engineering, 2005, 131 (3) :438-448.
  • 4Garlock M M, Sause R, Ricles J M, Behavior and Design of Posttensioned Steel Frame Systems[J]. Journal of Structural Engineering, 2007, 133 (3) :389-399.
  • 5Ricles J M, Sause R, Garlock M, Zhao C. Posttensioned seismic-resistant connections for steel frames[J]. Journal of Structural Engineering, 2001, 127(2):113-121.
  • 6Kobori T, Miura Y, Fukusawa E, Yamada T, Arita T, Takenake Y. Development and application of hysteresis steel dampers[C]. Proc 114 World Conference on Earthquake Engineering, 2341-2346.
  • 7Patricia M Clayton, Jeffrey W Berman. Seismic design and performance of self-centering steel plate shear walls[J]. Journal of Structural Engineer- ing, 2012, 138 ( 1 ) : 22-31.
  • 8Patricia M Clayton. Self-centering steel plate shear walls: Development of design procedure and evaluation of seismic [D]. University of Wash- ington, USA, 2010.
  • 9Tyler B Winkley. Self-centering steel plate shear wails: large scale experimental investigation[D]. USA:University of Washington, 2011.

共引文献140

同被引文献93

  • 1王伟,王明兴,陈以一,曹富荣.钢管柱-H形梁内加劲铸钢模块节点抗震性能试验研究[J].建筑结构学报,2015,36(3):71-79. 被引量:11
  • 2PEER. Report of the seventh joint planning meeting of NEES/E-defense collaborative research on earthquake engineering [ R ]. Berkeley, CA : University of California at Berkeley, 2010 : A-Ⅵ-2.
  • 3Cimellaro G P, Reinhom A M, Bruneau M. Framework for analytical quantification of disaster resilience [ J ]. Engineering Structures, 2010, 32 ( 11 ) : 3639-3649.
  • 4Vargas R, Bruneau M. Analytical response and design of buildings with metallic structural fuses: Ⅰ [ J ]. Journal of Structural Engineering, ASCE, 2009, 135 (4) : 386-393.
  • 5Wada A, Conor J J, Kawai H, et al. Damage tolerant structures [ C ]// Proceedings of Fifth US-Japan Workshop on the Improvement of Structural Design and Construction Practices. San Diego, California, USA : Applied Technology Council, 1992: 27-39.
  • 6Soong T T, Spencer Jr B F. Supplemental energy dissipation: state-of-the-art and state-of-the-practice [ J]. Engineering Structures, 2002, 24(3):243-259.
  • 7Ke K, Chert Y Y. Energy-based damage-control design of steel frames with steel slit walls [ J ]. Structural Engineering and Mechanics, 2014, 52 ( 6 ) : 1157-1176.
  • 8Dougka G, Dimakogianni D, Vayas I. Innovative energy dissipation systems ( FUSEIS 1-1 ) : experimental analysis[J]. Journal of Constructional Steel Research, 2014, 96: 69-80.
  • 9Malakoutian M, Berman J W, Dusicka P. Seismic response evaluation of the linked column frame system [ J ]. Earthquake Engineering and Structural Dynamics, 2013, 42(6) : 795-814.
  • 10Dimakogianni D, Dougka G, Vayas I, et al. Innovative seismic-resistant steel frames ( FUSEIS 1-2 ) : experimental analysis[ J]. Steel Construction, 2012, 5 (4) : 212-221.

引证文献4

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部