期刊文献+

一种新的加权关联规则算法

A New Algorithm of Weighted Association Rule
下载PDF
导出
摘要 为了解决MINWAL(O)算法存在的重复扫描数据库、挖掘出的加权频繁项集可能包含多个权值较低的项目等问题,提出一种新的加权关联规则算法.该算法定义了新的加权关联规则模型,提出最小支持期望的概念用于候选项集的修剪,挖掘出感兴趣的加权频繁项集.测试结果证明该算法有较高的时间效率. This study is to address the problems in MINWAL (0 ) which include repeated scanning and the multiple low weight items contained in weighted frequent item sets. We pro- pose a new algorithm of weighted association rule, which defines a model of weighted associa- tion rule. The concept of k - support minimum value of item sets is set forth for candidate item sets pruning and the interesting weighted frequent item sets are mined. The test results indicate that the algorithm is highly efficient.
出处 《西安文理学院学报(自然科学版)》 2014年第1期93-96,共4页 Journal of Xi’an University(Natural Science Edition)
基金 福建省服务海西资助项目(2012H405)
关键词 聚类分析 关联规则 加权关联规则 CCMW算法 cluster analysis association rule weighted association rule CCMW algorithm
  • 相关文献

参考文献5

二级参考文献13

  • 1邓丰义,刘震宇.基于模式矩阵的FP-growth改进算法[J].厦门大学学报(自然科学版),2005,44(5):629-633. 被引量:17
  • 2陈耿,朱玉全,杨鹤标,陆介平,宋余庆,孙志挥.关联规则挖掘中若干关键技术的研究[J].计算机研究与发展,2005,42(10):1785-1789. 被引量:62
  • 3AGRAWAL R,IMIELINSKI T,SWAMI A. Mining association rules between sets of items in large databases[C]// Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1993:207-216.
  • 4AGRAWAL R,SRIKANT R. Fast algorithms for mining association rules[C]//Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco, CA: Morgan Kaufman Publishers,1994:487-499.
  • 5HAN Jia-wei, KAMBER H J. Data mining., concepts and techniques[M]. Beijing :Higher Education Press,2001.
  • 6Agrawal R, Imielinski T, Swami A. Mining Association Rules Between Sets of Items in Large Database[C]//Proceedings of ACM SIGMOD International Conference on Management of Data. Washington, D. C., USA: [s. n.], 1993.
  • 7Park J S, Chen M S, Yu P S. An Effective Hash Based Algorithm for Mining Association Rules[C]//Proceedings of ACM SIGMOD International Conference on Management of Data. New York, USA: ACM Press, 1995.
  • 8Pasquoer N, Bastide Y, Taouil R, et al. Discovering Frequent Closed Item Sets for Association Rules[C]//Proc. of ICDT'99. Jerusalem, Israel: [s. n.], 1999.
  • 9Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns Without Candidate Generation[C]//Proceedings of the ACM SIGMOD International Conference on Management of Data. Dallas, Texas, USA: ACM Press, 2000.
  • 10Pasquoer N, Bastide Y, Taouil R. Efficient Mining of Association Rules Using Closed Item Set Lattices[J]. Information System, 1999, 24(1): 25-46.

共引文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部