期刊文献+

高电流密度实心电子束均匀磁场聚焦电子枪的设计 被引量:11

Design of High-Current-Density, Pencil-Beam Electron Gun with Uniform Magnetic Field Focusing
下载PDF
导出
摘要 针对W波段小型化扩展互作用器件对电子枪及其对电子束的需求,设计了采用均匀磁场聚焦的高电流密度实心电子束电子枪。首先考虑现阶段阴极发射能力和扩展互作用器件对电子束的需求下完成了静电电子枪的设计;在此基础上,将电子枪分为静电聚焦区、过渡区和均匀磁场区三个部分,通过理论计算得出了理想的均匀聚焦磁场分布。在此基础上建立了高电流密度实心电子束均匀磁场聚焦电子枪的三维粒子仿真模型,工作电压为17 kV,阴极发射电流为19.3 A/cm2的条件下得到了压缩比为33,束电流为668 mA,平均束半径为0.182 mm,平均束电流密度为642.4 A/cm2的高电流密度实心电子束。仿真结果表明,该电子束在半径为0.25 mm的电子通道内的流通率达到了100%,理论计算和三维粒子仿真的结果符合得很好。 The high-current-densitypencil - beam electron gun with the uniform magnetic field focusing was modeled, approximated, simulated, and designed to meet the increasing demands of the miniaturization of the W - band extended interaction devices. First, the electron gun was divided into three parts: an electrostatic focusing zone, transition zone, and a uniform magnetic field zone. Next the ideal; uniform focusing magnetic field was theoretically calculated. Finally, the characteristics of the high-current-density, electron beam were evaluated with the 3D model of the electron gun, formulated with the calculated uniform magnetic field. The calculated results included: at a working voltage of 17 k V, the beam current of 668 rnA from the space-charge-limited emission cathode, the average beam radius of 0.182 mm in the uniform magnetic fieldcorresponding to a compression ratio of 33 ,and the average beam current density of 642.4 A/ cm2 and an emission current density of 19.3 A/ cm2 . The transmission efficiency of the electron beam through a beam tunnel 0.50 mm in diameter was simulated to be 100% . The theoretical calculated and 3D particle-in-cell simulated results were found to be in good agreement.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2014年第2期148-152,共5页 Chinese Journal of Vacuum Science and Technology
基金 国家自然科学基金项目(61201011)资助课题
关键词 电子枪 均匀磁场聚焦 实心电子束 高电流密度 扩展互作用器件 Electron gun, Uniform magnetic field focusing, Pencil-beam, High-current-density, Extended interaction devices
  • 相关文献

参考文献8

二级参考文献26

  • 1Booske J H, Brian D M, Thomas M A Jr 1993 J. Appl. Phys. 73 4140.
  • 2Booske J H, Basten M A, Kumbasar A H, Antonsen T M Jr, Bidwell S W, Carmel Y, Destler W W, Granatstein V L, Radack D J 1994 Phys. Plasmas 1 1714.
  • 3Basten M A, Booske J H 1999 J. Appl. Phys. 85 6313.
  • 4Zhou J, Bhatt R, Chen C P 2006 Phys. Rev. Spec. Top. Accel. Beams 9 034401.
  • 5Carlsten B E, Russell S J, Earley L M, Krawczyk F L, Potter J M, Ferguson P, Humphries S Jr 2005 1EEE Trans. Plasma Sci. 33 85.
  • 6Cusick M, Atkinson J, Balkcum A, Caryotakis G, Gajaria D,Grant T, Meyer C, Lind K, Perrin M, Scheitrum G, Jensen A 2009 IEEE International Vacuum Electronics Conference ( Rome : IEEE) p296.
  • 7Scheitrum G, Caryotakis G, Burke A, Jensen A, Jongewaard E, Neubauer M, Phillips R, Steele R 2006 IEEE International Vacuum Electronics Conference ( California: IEEE) p481.
  • 8Wang S Z, Wang Y, Ding Y G, Ruan C J 2008 IEEE Trans. Plasma Sci. 36 665.
  • 9Zhao D 2009 Phys. Plasmas lfi 113102.
  • 10Nguyen K T, Pasour J A, Antonsen T M Jr, Larsen P B, Petillo J J, Levush B 2009 IEEEE Trans. Electron Dev. 56 744.

共引文献22

同被引文献77

引证文献11

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部