期刊文献+

等离子体增强原子层沉积系统及其应用研究 被引量:4

Lab-Built Plasma Enhanced Atomic Layer Deposition Reactor and Its Applications
下载PDF
导出
摘要 介绍了自行设计的等离子体增强原子层沉积(PEALD)系统及其原位制备氮掺杂纳米TiO2可见光催化剂的实验结果。PEALD系统主要由远程脉冲感应耦合等离子体发生器、真空反应腔室、真空系统、前驱体输运系统、控制系统等部分组成。沉积过程中前驱体的交替、等离子体的产生、样品台温度、载气流量、沉积周期等参数都可以预先设定并由控制系统自动执行。在研制的PEALD系统上首次开展原位氮掺杂纳米TiO2光催化剂的制备,高分辨透射电镜结果表明制备的氮掺杂TiO2薄膜为非晶态结构,薄膜厚度为3 nm,生长速率为0.05 nm/cycle;X射线光电子能谱结果表明N元素掺入到了制备的TiO2薄膜,并取代了TiO2薄膜中的O元素;紫外-可见光谱表明制备的氮掺杂TiO2薄膜对可见光的吸收率明显增强。 A novel type of plasma enhanced atomic layer deposition reactor was designed, constructed, and tested in the synthesis of N-doped Ti02 photo-catalyst. The reactor consists of a vacuum system, a remote pulsed inductively coupled plasma generator,precursor transport path, and the automatic control unit, capable of regulating the film growth conditions,such as the plasma generation, substrate temperature, gas flow rate, deposition cycle, and etc. The N-doped Ti02 films deposited in the test were characterized with X-ray diffraction, X-ray photoelectron spectroscopy, high resolution transmission electron microscopy, and ultraviolet visible spectroscopy. The results show that the 3 nm thick amorphous Ndoped Ti02 were synthesized at a growth rate of 0.05 nm/ cycle; and that some N substituted ° in the Ti02 film. We found that the N-doping significantly increases the absorption efficiency in the visible light range.
出处 《真空科学与技术学报》 EI CAS CSCD 北大核心 2014年第2期192-196,共5页 Chinese Journal of Vacuum Science and Technology
基金 极大规模集成电路制造装备及成套工艺项目(2009ZX02039) 中国科学院科研装备研制项目(YZ200755) 中国博士后基金资助项目(2011M500996) 中国博士后基金特别资助项目(2012T50513)
关键词 等离子体增强原子层沉积 原位掺杂 氮掺杂TiO2 结构表征 Plasma enhanced atomic layer deposition, In-situ doping, N-doped Ti02, Structure characterization
  • 相关文献

参考文献15

二级参考文献137

  • 1刘雄英,黄光周,范艺,于继荣.原子层沉积技术及应用发展概况[J].真空科学与技术学报,2006,26(z1):146-153. 被引量:12
  • 2吴宜勇,李邦盛,王春青.单原子层沉积原理及其应用[J].电子工业专用设备,2005,34(6):6-10. 被引量:13
  • 3Shin-ichi Zaitsu, Takahisa Jitsuno, Masahiro Nakatsuka, et al. Optical thin films consisting of nanoscale laminated layers. Appl. Phys. Lett. 2002,80, (14) :2442 - 2444
  • 4Shin-ichi Zaitsu, Shinji Motokoshi, Takahisa Jitsuno, et al. Large-Area Optical Coatings with Uniform Thickness Grown by Surface Chemical Reactions for High-Power Laser Applications. Jpn. J.Appl Phys.2002,41 : 160- 165
  • 5Shin-ichi Zaitsu, Shinji Motokoshi, Takahisa Jitsuno, et al. Laser-induced damage of optical coatings gown with surface chemical reaction. Proc. SPIE. 1999,3492: 204 - 211
  • 6Wang J J,Deng X,Varghese R,et al.Filling high aspect-ratio nano-structures by atomic layer deposition and its applications in nano-optic devices and integrations. Journal of vacuum science & technology,2005,23:3209- 3213
  • 7Ott AW,Klaus JW,Johnson JM,et al. Moditlcalion of porous alumina membranes using Al2O3 atomic layer controlled deposition. Chem Mater, 1997,9: 707 - 714
  • 8King J S,Helneman D, Graugnard E, et al.Atomic layer deposition in porous structures: 3D photonic crystals. Applied Surface Science,2005,244:511 - 516
  • 9Kuse R,Kundu M,Yasuda T,et al.Effect of precursor concentration in atomic layer deposition of Al2O3 .J Appl Phys. 2003.94:6411 - 6416
  • 10Sechrist Z A, Schwartz B T, Lee J H, et al. Modification of Opal Photonic Crystals Using Al2O3 Atomic Layer Deposition. Chem. Mater. 2006,18: 3562 - 3570

共引文献32

同被引文献85

  • 1赵嘉学,童洪辉.磁控溅射原理的深入探讨[J].真空,2004,41(4):74-79. 被引量:27
  • 2厉红,钱省三.集束型半导体制造设备的预防维修计划优化[J].半导体技术,2005,30(11):39-42. 被引量:6
  • 3George S M. Atomic Layer Deposition : an Overview [ J ]. Chemical Reviews,2009,110(1) : 111 - 131.
  • 4Mistry K, Allen C. A 45 run Logic Technology with High-K Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193 nm Dry Patterning,and 100% Ph-Free Packaging [C]. Electron Devices Meeting, Washington, DC: 2007: 247 -250.
  • 5Kuznetsov V I,Granneman E H A, Vermont P, et al. High TTiroughput ALD of AI2O3 Layers for Surface Passivation of Silicon Solar Cells[ J]. ECS Transactions, 2010,33 (2) : 441 -446.
  • 6Granneman E H A, Vermont P, Kuznetsov V I. Spatial ALD, Deposition of AI2O3 Films at TTiroughputs Exceeding 3000 Wafers Per Hour[ j] . ECS Transactions,2014,61 (3) :3 - 16.
  • 7Vennang B, Rothschild Aude,Racz A,et al. Spatially Separated Atomic Layer Deposition of Al203,a New Option for High-Throughput Si Solar Cell Passivation [ J ]. Progress in Photovoltaics: Research and Applications,2011,19(6) :733 - 739.
  • 8Lahtinen K,Maydannik Philipp,Johansson Petri,et al . Utilisation of Continuous Atomic Layer Deposition Process for Barrier Enhancement of Extrusion- Coated Paper [ J ]. Surface and Coatings Technology,2011,205(15) :3916 _ 3922.
  • 9Carcia P F,McLean R S,Groner M D,et al. Gas Diffusion Ultrabarriers on Polymer Substrates Using Atomic Layer Deposition and SiN Plasma-Enhanced Chemical Vapor Depo-sition[j] .Journal of Applied Physics, 2009,106( 2) :023533.1-023533.6.
  • 10Latella B A,Triani G,Evans P J.Toughness and Adhesion of Atomic Layer Deposited Alumina Films on Polycaibonate Sub-strates[j] .Scripta Materialia,2007,56(6) :493 - 496.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部