摘要
We obtain the optimal integrability for positive solutions of the Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality in R^n :{u(x)=1/|x|^α|∫R^n v(y)^q|y|^β|x-y|^λdy,v(x)=1/|x|^β∫R^n u(y)^p|y|^α|x-y|^λdy.C. Jin and C. Li [Calc. Var. Partial Differential Equations, 2006, 26: 447-457] developed some very interesting method for regularity lifting and obtained the optimal integrability for p, q 〉 1. Here, based on some new observations, we overcome the difficulty there, and derive the optimal integrability for the case of p, q ≥1 and pq ≠1. This integrability plays a key role in estimating the asymptotic behavior of positive solutions when |x| →0 and when |x|→∞.
We obtain the optimal integrability for positive solutions of the Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality in R^n :{u(x)=1/|x|^α|∫R^n v(y)^q|y|^β|x-y|^λdy,v(x)=1/|x|^β∫R^n u(y)^p|y|^α|x-y|^λdy.C. Jin and C. Li [Calc. Var. Partial Differential Equations, 2006, 26: 447-457] developed some very interesting method for regularity lifting and obtained the optimal integrability for p, q 〉 1. Here, based on some new observations, we overcome the difficulty there, and derive the optimal integrability for the case of p, q ≥1 and pq ≠1. This integrability plays a key role in estimating the asymptotic behavior of positive solutions when |x| →0 and when |x|→∞.
基金
Acknowledgements The authors wish to express their appreciations to the anonymous referees. Their suggestions have greatly improved this paper. They are also grateful to Prof. Congming Li for many fruitful discussion. The first author was supported by the National Natural Science Foundation of China (Grant No. 11171158), the Natural Science Foundation of Jiangsu (No. BK2012846), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.