摘要
We investigate tail behavior of the supremum of a random walk in the case that Cramer's condition fails, namely, the intermediate case and the heavy-tailed ease. When the integrated distribution of the increment of the random walk belongs to the intersection of exponential distribution class and O-subexponential distribution class, under some other suitable conditions, we obtain some asymptotic estimates for the tail probability of the supremum and prove that the distribution of the supremum also belongs to the same distribution class. The obtained results generalize some corresponding results of N. Veraverbeke. Finally, these results are applied to renewal risk model, and asymptotic estimates for the ruin probability are presented.
We investigate tail behavior of the supremum of a random walk in the case that Cramer's condition fails, namely, the intermediate case and the heavy-tailed ease. When the integrated distribution of the increment of the random walk belongs to the intersection of exponential distribution class and O-subexponential distribution class, under some other suitable conditions, we obtain some asymptotic estimates for the tail probability of the supremum and prove that the distribution of the supremum also belongs to the same distribution class. The obtained results generalize some corresponding results of N. Veraverbeke. Finally, these results are applied to renewal risk model, and asymptotic estimates for the ruin probability are presented.
基金
Acknowledgements The authors were grateful to the two reviewers for their valuable comments and suggestions to improve the present paper. This work was supported by the National Natural Science Foundation of China (NO. 11071182) and the Doctor Introduction Foundation of Nantong University (No. 12R066).