期刊文献+

数据操作系统中的双层优化调度模型 被引量:1

An Optimized Two-level Scheduling Strategy in DataOS
下载PDF
导出
摘要 调度问题是数据操作系统研究中的关键性问题,它建立了计算资源、计算任务以及数据间的链接关系。在海云协同网络环境下的调度问题中,常见的调度考量包括公平性、数据本地性等。由于数据操作系统使用环境的演化,工作负载中任务的交互特性给调度问题提出了新的挑战。本文在保留传统调度考量的基础上,兼顾交互、批处理两种作业模式的异同,提出一种优化的双层调度模型,并使用符合实际产业环境分布的工作负载在现实集群上对该调度模型进行了验证。实验结果说明,该模型以微量降低系统吞吐量的代价整体优化了交互作业的响应时间,同时兼顾了用户级公平性。 In DataOS,scheduling is the key mechanism that connects computing resources,jobs and data. Scheduling concerns in the current sea-cloud coordinating networked environment includes fairness concern,locality concern,etc. More importantly,due to the evolvement of workload in DataOS,the interactive behavior in workload post a new challenge for system scheduler. In this paper,based on traditional scheduling concerns and the new workload structure,a new two-level optimal scheduling model is presented. Results shows that with the new scheduling model,response time of interactive jobs are improved with the cost of small reduce in system throughput.
出处 《网络新媒体技术》 2014年第1期39-44,共6页 Network New Media Technology
基金 中国科学院战略性技术先导专项"面向感知中国的新一代信息技术先导专项(XDA06000000)"资助
关键词 任务调度 交互式作业 工作负载 数据操作系统 scheduling interactive job workload DataOS
  • 相关文献

参考文献9

  • 1Mohammad Al-Fares,Alexander Loukissas,Amin Vahdat. A scalable,commodity data center network architecture[A].{H}New York,2008.63.
  • 2Michael Isard,Vijayan Prabhakaran,Jon Currey. Quincy:fair scheduling for distributed computing clusters[A].{H}New York,2009.261.
  • 3Ganesh Ananthanarayanan,Ali Ghodsi,Scott Shenker,Ion Stoica. Disk-locality in datacenter computing considered irrelevant[A].Portland,2011.1.
  • 4Jian Tan,Xiaoqiao Meng,Li Zhang. Coupling task progress for mapreduce resource-aware scheduling[A].Turin,2013.1618.
  • 5Luiz André Barroso,Urs H(o)lzle. The datacenter as a computer:An introduction to the design of warehouse-scale machines[M].USA:Morgan and Claypool Publishers,2009.
  • 6Rajkumar Buyyaa,Chee Shin Yeoa,Srikumar Venugopala. Cloud computing and emerging IT platforms:Vision,hype,and reality for delivering computing as the 5th utility[J].{H}Future Generation Computer Systems,2009,(06):599.
  • 7黄哲学,曹付元,李俊杰,陈小军.面向大数据的海云数据系统关键技术研究[J].网络新媒体技术,2012,1(6):20-26. 被引量:63
  • 8Yanpei Chen,Sara Alspaugh,Randy Katz. Interactive analytical processing in big data systems:a cross-industry study of MapReduce workloads[J].Proceedings of the VLDB Endowment,2012,(12):1802.
  • 9Matei Zaharia,Dhruba Borthakur,Joydeep Sen Sarma. Delay scheduling:a simple technique for achieving locality and fairness icluster scheduling[A].{H}New York,2010.265.

二级参考文献3

  • 1Sanjay Ghemawat,Howard Gobioff,Shun-Tak Leung. The Google file system[A].ACM,Bolton Landing,NY,2003.20-43.
  • 2Jeffrey Dean,Sanjay Ghemawat. MapReduce:simplified data processing on large clusters[A].San Francisco,CA,USA,2004.137-150.
  • 3Clifford Lynch. Big data:How do your data grow[J].Nature,2008,(7209):28-29.doi:10.1038/455028a.

共引文献62

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部