期刊文献+

Erosion wear experiments and simulation analysis on bionic anti-erosion sample 被引量:7

Erosion wear experiments and simulation analysis on bionic anti-erosion sample
原文传递
导出
摘要 The dorsal surface of a desert lizard has excellent particle erosion resistance.In this paper,a bio-inspired sample was designed and fabricated based on the biological characteristics of the dorsal skin of the desert lizard(Laudakin stoliczkana).The bionic sample consists of two materials with different characteristics,which form a two-layer composite structure.The particle erosion property and erosion wear mechanism of the bionic sample was studied by means of sandblast experiment and numerical simulation,respectively.The experimental results show that,in the stage with steady abrasion rate,the weight loss per unit time of the bionic sample is about 10%lesser than the control sample.The numerical simulation indicated that the two-layer structure of the bionic sample can efficiently absorb the normal stress,and dissipate the stress in the horizontal direction.Thus,the stress concentration on the sample surface is suppressed.The two-layer structure is contributed to the decentralizing of the stress distribution,and thus the occurrence probability of erosion damage can be decreased. The dorsal surface of a desert lizard has excellent particle erosion resistance.In this paper,a bio-inspired sample was designed and fabricated based on the biological characteristics of the dorsal skin of the desert lizard(Laudakin stoliczkana).The bionic sample consists of two materials with different characteristics,which form a two-layer composite structure.The particle erosion property and erosion wear mechanism of the bionic sample was studied by means of sandblast experiment and numerical simulation,respectively.The experimental results show that,in the stage with steady abrasion rate,the weight loss per unit time of the bionic sample is about 10%lesser than the control sample.The numerical simulation indicated that the two-layer structure of the bionic sample can efficiently absorb the normal stress,and dissipate the stress in the horizontal direction.Thus,the stress concentration on the sample surface is suppressed.The two-layer structure is contributed to the decentralizing of the stress distribution,and thus the occurrence probability of erosion damage can be decreased.
出处 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第3期646-650,共5页 中国科学(技术科学英文版)
关键词 仿生 抗冲蚀 仿真分析 磨损试验 生物学特性 试样 侵蚀性能 冲蚀磨损机理 bionics,particle erosion,sandblast,desert lizard,numerical simulation
  • 相关文献

参考文献5

二级参考文献33

共引文献71

同被引文献51

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部