期刊文献+

大宗农产品价格风险评估——基于小波神经网络-Bootstrap方法的实证研究 被引量:10

Evaluation on Price Risk of Bulk Agricultural Product: Empirical Study Based on Wavelet Neural Network-Bootstrap Method
下载PDF
导出
摘要 构建了一个将小波神经网络与Bootstrap抽样相结合的价格风险评估模型。采用国际通用的VaR(在险价值)风险指标评估了国内小麦、水稻、玉米、大豆和棉花5种主要大宗农产品现货价格的风险水平,仿真研究了以上大宗农产品价格下跌风险和价格上涨风险的分布特征。结果表明:按价格风险水平由高到低对5种主要大宗农产品进行排序依次为棉花、大豆、玉米、小麦和水稻;从风险均值来看,我国大宗农产品价格特别是粮食价格的风险处于较低水平;从风险的经验分布来看,除大豆外,其他大宗农产品(特别是小麦、水稻和玉米)的涨价风险高于跌价风险;5种农产品的价格均存在偏度风险和峰度风险。 This paper combines wavelet neural network with bootstrap method to construct a risk evaluation model. And then it uses the international indicator,VaR(value at risk), to evaluate the risk levels of spot prices of domestic five kinds of bulk agricultural products including wheat, rice, corn, soya and cotton, and analyzes the distribution characteristics of left and right tails risk. The results show as follows:it is sorted by VaR in descending order that is cotton,soya,corn,wheat and rice;according to the mean value of VaR,the price risk level of domestic bulk agricultural products is low,especially grain crops;according to the distribution characteristic of VaR, the value of right tail risk is bigger than that of left tail risk,except soya;there exist skewness risk and kurtosis risk in the prices of domestic five kinds of bulk agricultural products.
作者 赵玉 祁春节
出处 《技术经济》 CSSCI 2014年第3期75-79,共5页 Journal of Technology Economics
基金 国家社会科学基金项目"农产品价格波动 传导与调控的实证研究"(11CJY063) 国家社会科学基金重大项目"我国鲜活农产品价格形成 波动机制与调控政策研究"(12&ZD048) 教育部博士点基金项目"中国农产品价格传导及其收益分配机制研究"(20110146110008)
关键词 大宗农产品 价格风险 小波神经网络 Bootstrap抽样 风险评估 bulk agricultural product price risk wavelet neural network bootstrap sampling risk evaluation
  • 相关文献

参考文献13

  • 1MARKOWITZ H M. Portfolio selection [J]. Journal of Finance, 1952,7(1): 77-91.
  • 2吴世农,陈斌.风险度量方法与金融资产配置模型的理论和实证研究[J].经济研究,1999,34(9):30-38. 被引量:83
  • 3JORION P. Value at Risk-The New Benchmark for Controlling Market Risk[M]. New York, McGraw-Hill Co. , 1997.
  • 4MCNEIL A J, FREY R. Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach [J]. Journal of Empirical Finance, 2000,7(3/4):271-300.
  • 5FERNANDEZ V. Risk management under extreme events [J]. International Review of Financial Analysis, 2005,14 (2) : 113-148.
  • 6HORNIK K,STINCHCOMBE M, WHITE H. Universal approximation of an unknown mapping and its derivatives using multilayer feed forward networks[J]. Neural Networks, 1990, 3( 5) : 551-560.
  • 7ZHANG Q H, BENVENISTE A. Wavelet network[J]. IEEE Transactions on Neural Networks, 1992, 3( 6) : 888- 898.
  • 8谢益辉,朱钰.Bootstrap方法的历史发展和前沿研究[J].统计与信息论坛,2008,23(2):90-96. 被引量:76
  • 9SINGH K. On the asymptotic accuracy of Efron's bootstrap[J]. Annals of Statistics, 1981,9(6): 1187-1195.
  • 10EFRON B. Bootstrap methods: another look at the jackknife[J]. The Annals of Statistics,1979,7(l):1-26.

二级参考文献101

共引文献214

同被引文献235

引证文献10

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部