期刊文献+

不确定参数分数阶Lorenz混沌系统的混合函数投影同步 被引量:1

Hybrid Function Projective Synchronization for Fractional-Order Lorenz Chaotic System with Uncertain Parameters
下载PDF
导出
摘要 针对不确定参数的分数阶混沌系统的同步问题,提出了一种自适应混合函数投影同步设计方案.基于分数阶系统稳定性理论,设计自适应控制器和参数更新律,实现分数阶Lorenz混沌系统的混合函数投影同步,并完成对响应系统所有不确定参数的辨识.数值仿真验证了该控制器和参数更新规则的有效性和正确性. To deal with the synchronization problem in fractional-order chaotic system with uncertain parameters, an adaptive hybrid function projective synchronization scheme is proposed. Based on the stability theory of fractional-order systems, the adaptive controllers and the parameter update laws are derived to make the fractional-order Lorenz chaotic system achieve hybrid function projective synchronization. Furthermore, all uncertain parameters of the response system are identified simultaneously. Numerical simulations are given to demonstrate the effectiveness of the adaptive controllers and the parameter update laws.
作者 刘景琳
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2014年第2期38-41,共4页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(61271117) 广东省科技计划项目(2011B080701092 2012B091100441)
关键词 分数阶混沌系统 混合函数投影同步 自适应控制 分数阶系统稳定性理论 fractional-order chaotic system hybrid function projective synchronization adaptive control the stability theory of fractional-order systems
  • 相关文献

参考文献10

  • 1Pecora L M, Carroll T L. Synchronization in chaotic sys- tems[ J]. Physical Review Letters, 1990, 64(8) : 821 - 824.
  • 2Zhang Q J, Lu J A. Chaos synchronization of a new eha- otie system via nonlinear eontrol[ J]. Chaos, Solitons and Fraetals, 2008, 37( 1 ) : 175 - 179.
  • 3李丰果,林木欣.混沌同步的电路演示系统[J].华南师范大学学报(自然科学版),1998,30(3):58-64. 被引量:1
  • 4Mainieri R, Rehacek J. Projective synchronization in three-dimensional chaotic systems [ J ]. Physical Review Letters, 1999, 82(15) : 3042 -3045.
  • 5Du H Y, Zeng Q S, Wang C H. Modified function pro- jective synchronization of chaotic system [ J ]. Chaos, Solitons and Fractals, 2009, 42 (4) : 2399 - 2404.
  • 6Zhou P, Yang X Y. A novel hybrid function projective synchronization between different fractional-order chaotic systems[ J ]. Discrete Dynamics in Nature and Society, 2011 : Art 496846, 15pp.
  • 7Podlubny I. Fractional differential equations [ M ]. San Diego : Academic Press, 1999.
  • 8Ogata K. Modem control engineering[ M]. 3rd ed. Upper Saddle River: Prentice Hall, 1998.
  • 9Grigorenko I, Grigorenko E. Chaotic dynamics of the fractional Lorenz system [ J ]. Physical Review Letters, 2003, 91(3) : 034101.
  • 10Zhou T S, Li C P. Synchronization in fractional order dif- ferential systems [ J ]. Physica D : Nonlinear Phenomena, 2005, 212(1/2) : 111 -125.

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部