期刊文献+

Quantum Speed Limit of a Photon under Non-Markovian Dynamics 被引量:2

Quantum Speed Limit of a Photon under Non-Markovian Dynamics
下载PDF
导出
摘要 Quantum speed limit (QSL) time under noise has drawn considerable attention in real quantum computational processes. Though non-Markovian noise is found to be able to accelerate quantum evolution for a damped Jaynes-Cummings model, in this work we show that non-Markovianity will slow down the quantum evolution of an experimentally controllable photon system. As an application, QSL time of a photon can be controlled by regulating the relevant environment parameter properly, which nearly reaches the currently available photonic experimental technology. Quantum speed limit (QSL) time under noise has drawn considerable attention in real quantum computational processes. Though non-Markovian noise is found to be able to accelerate quantum evolution for a damped Jaynes-Cummings model, in this work we show that non-Markovianity will slow down the quantum evolution of an experimentally controllable photon system. As an application, QSL time of a photon can be controlled by regulating the relevant environment parameter properly, which nearly reaches the currently available photonic experimental technology.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2014年第2期1-4,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 11204196 and 11074184, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20123201120004.
  • 相关文献

参考文献45

  • 1Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press).
  • 2Levitin LB 1982 Int. J. Theor. Phys. 21 299.
  • 3Mandelstam L and Tamm I 1945 J. Phys. (USSR) 9 249.
  • 4Fleming G N 1973 Nuovo Cimento A 16 232.
  • 5Anandan J and Aharonov Y 1990 Phys. Rev. Lett. 65 1697.
  • 6Vaidman L 1992 Am. J. Phys. 60 182.
  • 7Margolus N and Levitin L B 1998 Physica D 120 188.
  • 8Levitin L B and Toffoli T 2009 Phys. Rev. Lett. 103 160502.
  • 9Yung M H 2006 Phys. Rev. A 74 030303(H).
  • 10Caneva T, Murphy M, Calarco T, Fazio R, Montangero S, Giovannetti V and Santoro G E 2009 Phys. Rev. Lett. 103 240501.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部