摘要
By using magnetic tweezers, atomic force microscope and mass spectrometry, we study the effects of pH on oxaliplatin-induced DNA condensation, the DNA persistence length, the amounts of micro-loops and of oxaliplatin bound to DNA. It is found that the DNA condensation degree, the amounts of micro-loops and of oxaliplatin bound to DNA increase with the decrease in the pH value while the DNA persistence length has an opposite behavior. The observed effects may be related to the drug resistance of cancer cells.
By using magnetic tweezers, atomic force microscope and mass spectrometry, we study the effects of pH on oxaliplatin-induced DNA condensation, the DNA persistence length, the amounts of micro-loops and of oxaliplatin bound to DNA. It is found that the DNA condensation degree, the amounts of micro-loops and of oxaliplatin bound to DNA increase with the decrease in the pH value while the DNA persistence length has an opposite behavior. The observed effects may be related to the drug resistance of cancer cells.
基金
Supported by the National Natural Science Foundation of China under Grant Nos 11274374, 11104341 and 31070751, and the National Basic Research Program of China under Grant No 2013CB837200.