期刊文献+

一种基于条件信息熵的多目标代价敏感属性约简算法的研究 被引量:2

Multi- objective cost- sensitive attribute reduction based on conditional information entropy
下载PDF
导出
摘要 代价敏感学习是数据挖掘和机器学习领域的重要课题.已有的研究方法多数针对单目标进行优化,并不适用于多目标代价敏感问题的解决.因此通过分析基于粗糙集领域的单目标代价敏感属性约简问题,定义了多目标代价敏感属性约简问题,并设计了一种简单高效的算法.在4个UCI数据集上的实验结果表明,该算法能获得令人满意的帕累托最优解集,以辅助用户进行方案的选择. Cost - sensitive learning is a focus in the field of data mining and the application of machine learning. The existing cost - sensitive learning researches usually focus on the algorithms dealing with a single - objective optimization rather than multi -objective cost -sensitive problems. This research defines and tackles the multi -ob- jective attribute reduction problem with multiple types of cost. Experimental results on four UCI datasets indicate that this approach is effective to obtain satisfactory Pareto -optimal solution set and helpful to users in the scheme selection.
出处 《云南民族大学学报(自然科学版)》 CAS 2014年第2期141-145,共5页 Journal of Yunnan Minzu University:Natural Sciences Edition
关键词 代价敏感学习 粗糙集 属性约简 测试代价 延迟代价 cost- sensitive learning rough sets attribute reduction test cost time cost
  • 相关文献

参考文献12

  • 1PAN G Y, MIN F, ZHU W. A genetic algorithm to the minimal test cost reduct problem[ C ]/! IEEE International Conference on GrC. IEEE,2011 : 539 -544.
  • 2XU Z L, MIN F, LIU J B, ZHU W. Ant colony optimiza- tion to minimal test cost reduction [ C ]//IEEE Internation- al Conference on GrC. IEEE,2012:585 -590.
  • 3ZHAO H, MIN F, ZHU W. Test- cost- sensitive attrib- ute reduction based on neighborhood Rough set [ C ]// 2011 IEEE International Conference on GrC. IEEE ,2011 : 802 - 806.
  • 4MIN F, ZHU W. Minimal cost attribute reduction through backtracking [ C ]// Proceedings of International Confer- ence on Database Theory and Application, 258 of FGIT - DTA/BSBT, CCIS. 2011 : 100 - 107.
  • 5MIN F, ZHU W. A competition strategy to cost - sensitive decision trees[ C]//RSKT. 2012:359 - 368.
  • 6DEB K, PRATAP A, AGARWAL S. A fast and elitist multiobjective genetic algorithm: NSGA - II [ J ]. Evolu-tionary Computation. IEEE Transactions on, 2002, 6 (2) : 182 - 197.
  • 7LI L, CHEN H P, MIN F, et al. Attribute reduction in time- cost- sensitive decision systems through backtrack- ing[ J ]. Journal of Information and Computational Science, accepted, 2013.
  • 8HU Q H, YU D R, LIU J F, et al. Neighborhood rough set based heterogeneous feature subset selection[J]. Infor- mation Sciences, 2008, 178 (18): 3577-3594.
  • 9PAWLAK Z. Rough sets [ J ]. International Journal of Computer & Information Sciences, 1982, 11 (5): 341 - 356.
  • 10QIAN Y H, LIANG J Y, PEDRYCZ W, et al. Positive approximation: An accelerator for attribute reduction in rough set theory [ J ]. Artificial Intelligence, 2010, 174 (9/10) : 597 -618.

二级参考文献3

共引文献593

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部