摘要
代价敏感学习是数据挖掘和机器学习领域的重要课题.已有的研究方法多数针对单目标进行优化,并不适用于多目标代价敏感问题的解决.因此通过分析基于粗糙集领域的单目标代价敏感属性约简问题,定义了多目标代价敏感属性约简问题,并设计了一种简单高效的算法.在4个UCI数据集上的实验结果表明,该算法能获得令人满意的帕累托最优解集,以辅助用户进行方案的选择.
Cost - sensitive learning is a focus in the field of data mining and the application of machine learning. The existing cost - sensitive learning researches usually focus on the algorithms dealing with a single - objective optimization rather than multi -objective cost -sensitive problems. This research defines and tackles the multi -ob- jective attribute reduction problem with multiple types of cost. Experimental results on four UCI datasets indicate that this approach is effective to obtain satisfactory Pareto -optimal solution set and helpful to users in the scheme selection.
出处
《云南民族大学学报(自然科学版)》
CAS
2014年第2期141-145,共5页
Journal of Yunnan Minzu University:Natural Sciences Edition
关键词
代价敏感学习
粗糙集
属性约简
测试代价
延迟代价
cost- sensitive learning
rough sets
attribute reduction
test cost
time cost