期刊文献+

仿生缝翼的增升作用 被引量:3

High-lift effect of bionic slat
下载PDF
导出
摘要 以长耳鸮的翅膀为模本构建仿生翼型,并在此基础上构建没有凹口的仿生缝翼及仿生多段翼型。利用快速成型系统制作相应的准二维试验模型,并在低湍流度的风洞内进行试验,结果显示:在攻角小于5°时,仿生翼型的升力系数更大,而在攻角大于5°时,具有仿生缝翼的仿生多段翼型的升力系数更优。同时,仿生多段翼型中仿生缝翼能提高失速角和最大升力系数,而且还能延迟升力系数曲线斜率的下降,从而在一定攻角范围内阻止前缘分离的发生。在低雷诺数下的绕翼烟线显示了仿生翼型的前缘分离,但在相同工况下的仿生多段翼型的流场中没有出现前缘分离。这个优点也许可以被用在未来的前缘缝翼的设计中。 In this paper, a bionic airfoil mimicking the wing of a long-eared owl is proposed. On this basis, a bionic slat without cove and multi-element airfoil is built. In order to reveal high-lift effect of the bionic slat, the corresponding quasi-two-dimensional models are manufactured by rapid manufacturing and prototyping system. Experiments are conducted in a low-turbulence wind tunnel. The results show that the lift coefficient of the bionic airfoil is larger when the angle of attack is less than 5~, but lift coefficient of the bionic multi-element airfoil with slat is larger s when the angle of attack is greater than 5~. The bionic slat can increase the stall angle and the maximum lift coefficient~ at the same time, it can also delay the decline of the lift coefficient curve slope in order to prevent the leading-edge separation within a certain range of angle of attack. Furthermore, the flow field around the models is visualized by smoke wire method, which shows the leading-edge separation of the bionic airfoil at low Reynolds numbers. However, the finding does not occur in the flow field of the bionic multi-element airfoil at the same conditions. This superiority may be used as reference in the design of the leading-edge slat or slot.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第2期387-391,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(31071928)
关键词 工程仿生学 小翼羽 仿生缝翼 风洞 增升作用 engineering bionics alula bionic slat wind tunnel high-lift effect
  • 相关文献

参考文献15

  • 1Soderman P T, Kafyeke F, Boudreau J, et al. Air- frame noise study of a Bombardier CRJ-700 aircraft model in the NASA Ames 7-by 10-foot wind tunnel [J]. International Journal of Aeroacoustics, 2004, 3 (1) : 1-42.
  • 2Chow L C, Mau K, Remy H. Landing gear and high lift devices airframe noise research[C]//AIAA Paper, 2002-2408.
  • 3Zhaokai Ma. Slat noise attenuation using acoustic liner[C]//AIAA Paper, 2005-3009.
  • 4Smith M G, Chow L C, Molin N. Attenuation of slat trailing edge noise using slat gap acoustic liners [C]//AIAA Paper, 2006-2666.
  • 5Choudhari M, Khorrami M R, Lockard D P. Slat cove noise modeling: a posteriori analysis of un- steady RANS simulations[C]//AIAA Paper, 2002 - 2468.
  • 6Takeda K, Ashcroft G B, Zhang X. Unsteady aero- dynamics of slat Cove flow in a high-lift device con- figuration[C]//AIAA Paper, 2001-0706.
  • 7徐成宇,钱志辉,刘庆萍,孙少明,任露泉.基于长耳鸮翼前缘的仿生耦合翼型气动性能[J].吉林大学学报(工学版),2010,40(1):108-112. 被引量:17
  • 8Meseguer J, Franchini S, Perez-Grande I, et al. On the aerodynamics of leading-edge high-lift devices of avian wings[J]. Proc Inst Mech Eng G, 2005, 219: 63-68.
  • 9van Der Burg J W, Eliasson P, Delille T, et al. Ge- ometric installation and deformation effects in high- lift flows[C]//AIAA Journal, 2009, 47: 60-70.
  • 10Rudnik R. Stall behaviour of the eurolift high-lift configurations[C] // AIAA Paper, 2008-836.

二级参考文献3

共引文献16

同被引文献12

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部