期刊文献+

基于连续介质损伤力学预测7075铝合金热冲压成形极限图 被引量:15

Prediction of FLD for AA7075 under hot stamping based on continuum damage mechanics
下载PDF
导出
摘要 针对应用试验方法获得的7075-T6铝合金板材热冲压成形极限图(FLD)的局限性,开展了基于连续介质损伤力学预测7075铝合金热成形FLD的方法研究。提出应用一组单轴黏塑性损伤本构方程并优化材料常数,建立了平面应力损伤本构方程,通过分析7075铝合金在不同温度时成形极限曲线(FLC)的特点,得出不同应力状态对损伤的影响,预测7075-T6铝合金板材在四组温度和三组应变率下的FLC。研究结果表明,基于单轴损伤本构方程进行数值分析得到的应力-应变曲线与试验曲线基本吻合。应用平面应力黏塑性损伤本构方程能够预测铝合金板材热冲压过程中不同温度和应变率的FLD,为铝合金板材热冲压过程提供失效判断依据。 In view of the limitation of the Forming Limit Diagram (FLD), which is used to evaluate the formability of AA7075 under hot stamping conditions, the continuum damage mechanics was introduced into the prediction of the FLD. A set of uniaxial damage constitutive equations was presented and the material constants were optimized. Based on the analysis of the features of Forming Limit Curves (FLCs) for AA7075 at different temperatures, a plane-stress damage equation was proposed to take account of the damage of material at different stress-strain state. Then the FLCs were predicted on the condition of four sets of temperatures and three sets of strain rates. The results indicate that the stress-strain curves of the numerical analysis of uniaxial damage constitutive equation and the experimental curves are basically consistent. Using the plane-stress unified viscoplastie damage constitutive equations can predict the FLD at different temperature and strain rate in the hot stamping process and provide the failure criteria.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第2期409-414,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(51075178) 上海市复杂薄板结构数字化制造重点实验室开放基金项目(2013001)
关键词 材料合成与加工工艺 固体力学 本构方程 7075铝合金 成形极限图 热冲压 materials synthesis and processing technology solid-state mechanics constitutive equation 7075 aluminum alloy forming limit diagram hot stamping
  • 相关文献

参考文献16

二级参考文献33

  • 1于忠奇,赵亦希,林忠钦.汽车用铝合金板拉深性能评估参数[J].中国有色金属学报,2004,14(10):1689-1693. 被引量:31
  • 2周义,曾志鹏,金泉林.工业铝合金汽车覆盖件的超塑成形研究[J].塑性工程学报,2004,11(5):64-66. 被引量:12
  • 3李春峰.铝合金覆盖件成形新技术[J].机械工人(热加工),2007,31(4):35-37. 被引量:1
  • 4Ashley, Steven. Steel cars face a weighty decision[J]. Mechanical Engineering, 1997. 119 (2):56-61.
  • 5Miller W S, Zhuang L. Recent development in aluminum alloys for the automotive industry[J]. Materials Science and Engineering A, 2000. 280:37-49.
  • 6Hayash IH, Nakagawa T. Recent trends in sheet metals and their formability in manufacturing automotive panels[J]. Journal of Materials Processing Technology, 1994. 46:455-487.
  • 7Cunsheng Zhang, Lionel Leotoing, Dominique Guines, Eric Ragneatu Theoretical and numerical study of strain rate influence on AA5083 formability[J]. Journal of materials processing technology, 2009. 209 : 3849-3858.
  • 8Daoming Li, Amit Ghosh. Tensile deformation behavior of aluminum alloys at warm forming temperatures[J]. Materials Science and Engineering A, 2003. 352: 279- 286.
  • 9Daoming Li,Amit K. Ghosh. Biaxial warm forming behavior of aluminum sheet alloys[J]. Journal of Materials Processing Technology, 2004. 145 : 281-293.
  • 10Schroth J G. General Motor's quick plastic forming process[C]. Advances in Superplasticity and Superplastic Forming. 2004 : 9-20.

共引文献61

同被引文献126

引证文献15

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部