准变量思维:赋予学生代数思维生长的力量
被引量:1
摘要
准变量思维作为算术思维和代数思维之间的中介,是学生的数学思维从算术思维发展到代数思维的桥梁和纽带,能促进算术学习与代数学习的有效联结。在数学课堂中,教师应充分挖掘算术中的代数特性,精心呵护与扶植学生的准变量思维。
二级参考文献12
-
1Irwin K, Britt M. The Algebraic Nature of Students' Numerical Manipulation in the New Zealand Numeracy Project [J]. Educational Studies in Mathematics, 2005, (58): 169-188.
-
2Stephens M. Describing and Exploring the Power of Relational Thinking [A]. In: Grootenboer P, Zevenbergen R, Chinnappan M. Identifies, Cultures and Learning Spaces, Proceeding of the 29th Annual Conference of the Mathematics Education Research Group of Australasia[C]. Canberra: MERGA, 2006.
-
3Carpenter T P, Franke M L. Developing Algebraic Reasoning in the Elementary School: Generalization and Proof [A]. In: Chick H, Stacey K, Vincent J, et al. Proceedings of the 12th ICMI Study Conference. The Future of the Teaching and Learning of Algebra [C]. Melbourne: University of Melbourne, 2001.
-
4Kieran C. Concepts Associated with the Equality Symbol [J]. Educational Studies in Mathematics, 1981, (12): 317-326.
-
5Stephens M. Students' Emerging Algebraie Thinking in the Middle School Years [A]. In: Watson J, Beswick K. Mathematics: Essential Research, Essential Practice, Proceedings of the 30th Annual Conference of the Mathematics Education Research Group of Australasia [C]. Hobart: MERGA, 2007.
-
6Stephens M, Isoda M, Inprashita. Exploring the Power of Relational Thinking: Students' Emerging Algebraic Thinking in the Elementary and Middle School [A]. In: Lim C S, Fatimah S, Munirah G, et al. Meeting Challenges of Developing Quality Mathematics Education, Proceedings of the Fourth East Asia Regional Conference on Mathematics Education (EARCOME4) [C]. Penang: Malaysia, 2007.
-
7Lee L. Early Algebra But Which Algebra? [A]. In: Chick H, Stacey K, Vincent J, et al. Proceedings of the 12th ICMI Study Conference. The Future of the Teaching and Learning of Algebra [C]. Melbourne: University of Melbourne, 2001.
-
8Zazkis I, Liljedhal E Generalisation of Patterns: The Tension between Algebraic Thinking and Algebraic Notation [J]. Educational Studies in Mathematics, 2002, (49): 379--402.
-
9Fujii T. Probing Students' Understanding of Variables Through Cognitive Conflict Problems: Is the Concept of a Variable so Difficult for Students to Understand? [A]. In: Pateman N A, Dougherty B J, Zilliox J. Proceedings of the Joint Meeting of PME and PMENA [C]. University of Hawai'i: PME, 2003.
-
10Jacobs V R, Franke M L, Carpenter T P, et al. Developing Children's Algebraic Reasoning [J]. Journal for Research in Mathematics Education, 2007, 38(3): 258-288.
共引文献19
-
1缪玉婷.借助几何画板 促进思维跨越——“用字母表示数”教学案例分析[J].小学数学教育,2022(18):56-60.
-
2张亚松.关系与结构:小学生“代数思维”的早期渗透——以“求未知加数”教学为例[J].小学数学教育,2021(24):4-7. 被引量:1
-
3徐文彬,杨玉东.“本原性问题”及其在数学课堂教学中的应用[J].数学教育学报,2005,14(3):14-16. 被引量:19
-
4徐文彬,喻平.“数感”及其形成与发展[J].数学教育学报,2007,16(2):8-11. 被引量:41
-
5Max Stephens,章勤琼.中澳美的经济变革与数学课程改革方向[J].数学教育学报,2010,19(5):4-7. 被引量:2
-
6汤卫红.合理“解压”教材构建多元表征——“列方程解决实际问题”活动单设计与反思[J].小学数学教师,2011(3):40-46.
-
7章勤琼,徐文彬,Max Stephens.新课程背景下中澳两国数学教师教学能力的比较研究——以加强数与代数学习之间的衔接为例[J].课程.教材.教法,2011,31(11):59-65. 被引量:4
-
8章勤琼,谭莉.准变量及其思维——数与代数之间的内在关联[J].江苏教育(小学教学),2013(9):6-9. 被引量:3
-
9徐文彬.如何在算术教学中也教授代数思维[J].江苏教育(小学教学),2013(9):16-17. 被引量:5
-
10葛道凯.中国职业教育二十年政策走向[J].课程.教材.教法,2015,35(12):3-13. 被引量:45
-
1曹健.定义,不是最重要的——以数学史背景下的“方程”教学为例[J].小学数学教师,2015(9):31-35.
-
2张达.由“方程组”谈谈数学思维[J].中学数学(初中版),2016,0(9):89-90.
-
3潘彩.谈如何让学生从算术思维走向代数思维[J].新校园(上旬刊),2014,0(4):145-145.
-
4季锦燕.让天平“住”进心里——听吴正宪老师教学“认识方程”一课的启发[J].小学教学参考(数学版),2014(3):28-29.
-
5杜楠.“字母表示数”教学设计与思考[J].小学教学(数学版),2016,0(4):36-37.
-
6徐宏臻.“用字母表示数”教学难点及突破[J].小学数学教育,2015,0(12X):5-6.
-
7钱建兵.转变思维模式 巧入代数学习之门——小学方程思想教学的思考[J].辽宁教育,2016(4):39-41.
-
8刘伟.算术思维的基本形式——凝聚[J].杂文月刊(下半月),2015(5):249-249.
-
9壮惠铃,孙玲.从算术思维到代数思维[J].小学教学研究,2006(3):24-26. 被引量:5
-
10陈祥.准变量思维:架起学生代数思维培养的桥梁[J].课程教育研究,2015,0(1):130-130.