期刊文献+

准变量思维:赋予学生代数思维生长的力量 被引量:1

下载PDF
导出
摘要 准变量思维作为算术思维和代数思维之间的中介,是学生的数学思维从算术思维发展到代数思维的桥梁和纽带,能促进算术学习与代数学习的有效联结。在数学课堂中,教师应充分挖掘算术中的代数特性,精心呵护与扶植学生的准变量思维。
作者 毛新薇
出处 《江苏教育(小学教学)》 2014年第2期40-41,共2页 Jiangsu Education
  • 相关文献

二级参考文献12

  • 1Irwin K, Britt M. The Algebraic Nature of Students' Numerical Manipulation in the New Zealand Numeracy Project [J]. Educational Studies in Mathematics, 2005, (58): 169-188.
  • 2Stephens M. Describing and Exploring the Power of Relational Thinking [A]. In: Grootenboer P, Zevenbergen R, Chinnappan M. Identifies, Cultures and Learning Spaces, Proceeding of the 29th Annual Conference of the Mathematics Education Research Group of Australasia[C]. Canberra: MERGA, 2006.
  • 3Carpenter T P, Franke M L. Developing Algebraic Reasoning in the Elementary School: Generalization and Proof [A]. In: Chick H, Stacey K, Vincent J, et al. Proceedings of the 12th ICMI Study Conference. The Future of the Teaching and Learning of Algebra [C]. Melbourne: University of Melbourne, 2001.
  • 4Kieran C. Concepts Associated with the Equality Symbol [J]. Educational Studies in Mathematics, 1981, (12): 317-326.
  • 5Stephens M. Students' Emerging Algebraie Thinking in the Middle School Years [A]. In: Watson J, Beswick K. Mathematics: Essential Research, Essential Practice, Proceedings of the 30th Annual Conference of the Mathematics Education Research Group of Australasia [C]. Hobart: MERGA, 2007.
  • 6Stephens M, Isoda M, Inprashita. Exploring the Power of Relational Thinking: Students' Emerging Algebraic Thinking in the Elementary and Middle School [A]. In: Lim C S, Fatimah S, Munirah G, et al. Meeting Challenges of Developing Quality Mathematics Education, Proceedings of the Fourth East Asia Regional Conference on Mathematics Education (EARCOME4) [C]. Penang: Malaysia, 2007.
  • 7Lee L. Early Algebra But Which Algebra? [A]. In: Chick H, Stacey K, Vincent J, et al. Proceedings of the 12th ICMI Study Conference. The Future of the Teaching and Learning of Algebra [C]. Melbourne: University of Melbourne, 2001.
  • 8Zazkis I, Liljedhal E Generalisation of Patterns: The Tension between Algebraic Thinking and Algebraic Notation [J]. Educational Studies in Mathematics, 2002, (49): 379--402.
  • 9Fujii T. Probing Students' Understanding of Variables Through Cognitive Conflict Problems: Is the Concept of a Variable so Difficult for Students to Understand? [A]. In: Pateman N A, Dougherty B J, Zilliox J. Proceedings of the Joint Meeting of PME and PMENA [C]. University of Hawai'i: PME, 2003.
  • 10Jacobs V R, Franke M L, Carpenter T P, et al. Developing Children's Algebraic Reasoning [J]. Journal for Research in Mathematics Education, 2007, 38(3): 258-288.

共引文献19

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部