期刊文献+

基于树突状细胞理论的入侵检测模型研究

Research on intrusion detection model based on DCA
下载PDF
导出
摘要 人工免疫入侵检测是当前主流的入侵检测技术之一,而危险理论中树突状细胞入侵检测方法是人工免疫研究的最新成果。建立危险理论树突状细胞入侵检测模型的关键是要解决危险信号的定义和表示,文章在免疫危险理论和树突状细胞理论基础上,使用多分类器算法动态提取危险信号,设计MC-DCA入侵检测模型,以提高抗原提呈、抗体识别的效率;并使用KDD CUP 99常用网络入侵检测数据,对构建的MC-DCA入侵检测仿真模型和传统AIS模型、DT模型进行对比和仿真实验,实验结果表明MC-DCA有更好的入侵检测识别能力。 Artificial immune intrusion detection (AIID) is one of the current major technology on intru-sion detection ,and the dendritic cell algorithm(DCA) in danger theory is the latest results of the re-search of AIID .The key to establish the DCA intrusion detection model based on danger theory is to define and express danger signals .In this paper ,based on the immune danger theory and DCA ,a dy-namic danger signals extraction method using the multiple classifier (MC) algorithm is proposed and a MC-DCA intrusion detection model is designed ,so as to improve the efficiency of antigen presentation and antibody recognition .The network intrusion detection data commonly used by KDD CUP 99 is used for the simulation experiments on the proposed MC-DCA intrusion detection model and the tradi-tional AIS model and DT model .The result shows that the recognition ability of MC-DCA intrusion detection system based on danger theory is better .
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第3期306-309,共4页 Journal of Hefei University of Technology:Natural Science
基金 广西自然科学基金面上资助项目(2013GXNSFAA019337) 广西自然科学基金青年基金资助项目(桂科青0832101) 玉林师范学院专项研究基金资助项目(2012YJZX04)
关键词 入侵检测系统 危险理论 DCA模型 intrusion detection system danger theory dendritic cell algorithm(DCA) model
  • 相关文献

参考文献5

二级参考文献22

  • 1郭晨,梁家荣,王厚茜.基于危险模式免疫算法的入侵检测系统模型[J].兰州理工大学学报,2005,31(4):79-82. 被引量:12
  • 2董乐红,耿国华,高原.Boosting算法综述[J].计算机应用与软件,2006,23(8):27-29. 被引量:26
  • 3许春,李涛,刘孙俊,赵辉,张建华,刘念.基于免疫危险理论的新型网络入侵检测方法研究[J].南京邮电大学学报(自然科学版),2006,26(5):80-85. 被引量:17
  • 4胡军华,周炎涛,郭如冰.一种基于网络的入侵检测模型及其实现[J].湖南大学学报(自然科学版),2006,33(6):119-122. 被引量:4
  • 5Forrest S, Hofmerry S A, Somayaji A. Computer immunology[J]. Communications of the ACM,1997,40(10):88-96.
  • 6Bivens A,Palagiri C, Smith R, et al. Network-based intrusion detection using neural networks[C]//Proc Intelligent Engineering Systems Through Artificial Neural Networks ANIVIE-2002, St. Louis, MO, Vol 12. NewYork: ASME Press, 2002 : 579-584.
  • 7Bolanos R F, Cadena C A, Nino F. Detection of denial of service attacks using neural networks [C]//Proc of 6 th World Multiconference on Systemics, Cybernetics and Informatics, 2002.
  • 8Brugger S T. Data mining methods for network intrusion detection [EB/OL]. http://www-static. cc. gatech. edu/-guofei/reading/brugger_dmnid.pdf, 2009-01-04.
  • 9Lee W,Stolfo S J,Mok K W. A data mining framework for building intrusion detection models [C]//Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland: IEEE, 1999 : 120-132.
  • 10F M Bumet. The clonal selection theory of acquired immunity [ M ]. Cambridge:Vanderbilt University Press, 1959.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部