摘要
基于广义二次矩阵的性质和研究方法给出广义三次矩阵的定义,并证明了广义三次矩阵对幂、逆及线性运算封闭,且在某些条件下广义三次矩阵可表示为3个两两可交换且乘积为零的幂等矩阵的线性组合.结果表明,二次矩阵是广义三次矩阵的特例.
Based on the properties of generalized quadratic matrix and method used,the generalized cubic matrix was defined.It is proved that the generalized cubic matrix is closed for the power,the inverse and linear operation of the matrix.It is also pointed out that under some conditions,the generalized cubic matrix can be represented as the linear combination of three idempotent matrices which are commutative and the products are zero.The results show that genteralized quadratic matrix is a special case of the generalized cubic matrix.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2014年第2期195-200,共6页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:61074039)
福建省自然科学基金(批准号:2013J00102)
福建省高校服务海西建设重点项目(批准号:2008HX03)
关键词
广义三次矩阵
广义二次矩阵
幂
逆
线性组合
generalized cubic matrix
generalized quadratic matrix
power
inverse
linear combination