期刊文献+

一种基于多分类语义分析和个性化的语义检索方法 被引量:1

Semantic search approach based on multi-classification semantic analysis and personalization
下载PDF
导出
摘要 为了进一步提升语义检索的精度和改善用户体验,提出了一种基于多分类语义分析和个性化的语义检索方法.首先,利用改进的多分类语义分析方法实现目标文档的向量化,并建立词向量库;然后,利用支持向量机对文档进行分类,并结合文档类别生成标签索引.在检索时,根据词向量库的引导,使用用户历史检索记录和个人信息优化检索结果.实验结果显示,基于该方法的系统的检索精度、平均DCG和nDCG指标值分别达到0.7,7.267和0.890,较基于Lucene方法和Yahoo Directory方法所得结果的均值分别高出31%,36%和19%.在时间复杂度上,每次检索的平均耗时为0.669 s,较Lucene方法仅增加了0.326 s.由此可见,该方法提高了检索的精度和综合相关度,且额外的时间消耗较少. To further enhance the accuracy of semantic search and improve the user experience,a novel approach for semantic search based on multi-classification semantic analysis (MSA)and per-sonalization is presented.First,documents are transformed into vectors and stored in term vector da-tabase (TVDB )by using the modified MSA method.Then,documents are classified by support vector machine(SVM)and wrote into index with categories.In the search process,users' search history and personal information are used to optimize the search results with the help of TVDB .The experiment results show that the average precision,the average discounted cumulative gain(DCG) and the average normalized discounted cumulative gain(nDCG)otained by using this approach are 0.7,7.267 and 0.890,respectively,which are 31%,36%and 19%higher than the average of the results calculated by the Lucene method and the Yahoo Directory method.And the time complexity per query is 0.669 s,which is only 0.326 s more than that by using the Lucene method.Therefore, this approach can improve the relevance and precision of semantic search with a rational time cost.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第2期261-265,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(61001197 61372182) 国家电网公司科技资助项目(522722130292)
  • 相关文献

参考文献10

  • 1Liu F, Yu C. Personalized web search for improving re?trieval effectiveness[J]. IEEE Transactions on Knowl?edge and Data Engineering, 2004, 16 (1 ) : 28 - 40.
  • 2Wang T D, Deshpande A, Shneiderman B. A temporal pattern search algorithm for personal history event visu?alization[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24 ( 5 ) : 799 - 812.
  • 3Pang M, Xu G. A personalized search engine research based on bloom filter mechatronic science[CJ / / Pro?ceedings of 2011 IEEE International Conference on Mechatronic Science, Electric Engineering and Comput?er. Changchun, China, 2011: 2365 -2366.
  • 4Eberlein A. Calculating the strength of ties of a social network in a semantic search system using hidden Mark?ov models[CJ / / Proceedings of2011 IEEE Internation?al Conference on Systems, Man and Cybernetics. An?chorage, Alaska, USA, 2011: 2755 -2760.
  • 5Lai L F, Wu C C, Lin P Y. Developing a fuzzy search engine based on fuzzy ontology and semantic search[CJ / / Proceedings of 2011 IEEE International Confer?ence on Fuzzy Systems. Taipei, China, 2011: 2684 - 2689.
  • 6Singh R, Dhingra D A. A SCHISM-a web search en?gine using semantic taxonomy[J]. IEEE Potentials, 2010, 29(5) : 36 -40.
  • 7Paltoglou G, Thelwall M. A study of information re?trieval weighting schemes for sentiment analysis[CJ / / Proceedings of the 48th Annual Meeting of the Associa?tion for Computational Linguistics. Stroudsburg, Penn?sylvania, USA, 2010: 1386 -1395.
  • 8Li Z X, Xiong Z Y. Fast text categorization using con?cise semantic analysis[J]. Pattern Recognition Letters, 2011, 32( 3) : 441 - 448.
  • 9Imielinski T, Signorini A. If you ask nicely, I will an?swer: semantic search and today's search engines[CJ / / Proceedings of 2009 IEEE International Confer?ence on Semantic Computing. Berkeley, CA, USA, 2009: 184 - 191.
  • 10Tarnine-Lechani L, Boughanem M, Daoud M. Evalu?ation of contextual information retrieval effectiveness: overview of issues and research[J]. Knowledge and Information Systems, 2010, 24(1): 1 - 34.

同被引文献7

  • 1Lv Y H, Zhai C X, Chert W. A boosting approach to improving pseudo-relevance feedback [ C]//Research and development in Information Retrieval, ACM ,2011 : 165 - 174.
  • 2Wang L, Lin J, Metzler D. A cascade ranking model for efficient ranked retrieval//Research and development in Information Retrieval, ACM,2011 : 105 - 114.
  • 3Page L, Brin S, Motwani R, et al. The PageRank citation ranking: Bringing order to the web[J]. 1998.
  • 4Bhardwaj A, Mangat V. A Novel Approach for Content Extraction from Web Pages[ C]//Engineering and Computational Sciences (RAECS) ,2014 : 1 - 4.
  • 5Samovsky M, Vronc M. Distributed boosting algorithm for classification of text documents [ C ]//Applied Machine Intelligence and Informatics(SAMI) ,2014:217 - 220.
  • 6花贵春,张敏,刘奕群,马少平,茹立云.面向排序的基于查询需求的查询聚类模型[J].计算机研究与发展,2012,49(11):2407-2413. 被引量:2
  • 7蔡飞,陈洪辉,舒振.基于用户相关反馈的排序学习算法研究[J].国防科技大学学报,2013,35(2):132-136. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部