期刊文献+

平面摩擦副表面脉冲电流电解磨削试验研究 被引量:3

Experimental research on pulsed current electrochemical grinding of working surface in plane friction pairs
下载PDF
导出
摘要 为了提高剃须刀摩擦副的刀网内平面电解磨削加工质量,采用流场数值分析对3种不同结构的磨头进行了流速分布均匀性研究,并对流场数值分析进行了试验验证.基于数值分析和试验验证,开展了峰值电压、占空比、机械进给速度、电解液温度等参数对粗糙度、平面度影响规律的试验研究.结果表明:采用峰值电压10.5 V、占空比50%、进给速度0.8~0.9 mm/min、电解液温度30~32℃的优选参数组合,粗糙度为0.3~0.6μm,平面度小于10μm,同时刀网内平面加工质量稳定且加工效率高,已经能够满足批量生产的需要. In order to improve the electrochemical grinding quality of the shaver cap's inner flat sur-face in the shaver friction pair,the electrolyte flow velocity distribution uniformity of three kinds of grinding head structures is studied by flow numerical analysis,and experiments are carried out to verify the results of flow numerical analysis.Based on the flow numerical analysis and experimental verifications,the influence law of peak voltage,duty cycle,mechanical feedrate,electrolyte temper-ature,and other machining parameters on the surface roughness and flatness is studied by experi-ments.The results show that roughness in the range of 0.3 to 0.6 μm and flatness less than 10μm can be obtained by adopting optimized parameters,i.e.10.5 V peak voltage,50%duty cycle,0.8 to 0.9 mm/min mechanical feed rate,and 30 to 32 ℃electrolyte temperature.Besides,under the optimized parameters,the stable machining quality and high machining efficiency of the shaver cap's inner flat surface can be obtained,which meet the needs of mass production.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第2期283-288,共6页 Journal of Southeast University:Natural Science Edition
基金 航空科学基金资助项目(2011ZE52055) 青年科技创新基金资助项目(NS2013052) 江苏省高校优势学科建设工程资助项目(J0502)
关键词 电解磨削 摩擦副 流场数值分析 粗糙度 平面度 electrochemical grinding friction pair flow numerical analysis roughness flatness
  • 相关文献

参考文献10

  • 1Nakada M. Trends in engine technology and tribology [ Jl. Tribol lnt, 1994, 27(1):3-8.
  • 2王立杰,宋飚,单玉霞,徐兆军.高速旋转接头中液压控制密封间隙原理分析[J].机床与液压,2009,37(7):76-77. 被引量:4
  • 3Takahata K, Gianchandani Y B. Batch mode micro- EDM for high-density and high-throughput micro-ma- chining [ J ]. Journal of Microelectromechanical Sys- tems, 2002, 11(4) :72 -75.
  • 4Schuster R, Kirchner V, Allongue P, et al. Electro- chemical micromachining [ J 1. Science, 2000, 289 (5476) : 98 - 101.
  • 5徐家文,云乃彰,王建业,等.电化学加工技术[M].北京:国防工业出版社,2008:3-5.
  • 6Kozak J, Oczos K E. Selected problems of abrasive hy- brid machining E J ]. Journal of Materials ProcessingTechnology, 2001,109 (3) : 360 - 366.
  • 7Curtis D T, Soo S L, Aspinwall D K, et al. Electro- chemical superabrasive machining of a nickel-based aeroengine alloy using mounted grinding points I J ]. Cirp Annals-Manufacturing Technology, 2009, 58 ( 1 ) : 173 - 176.
  • 8林允森,董世运,田欣利,巴国召.激光熔覆硬韧材料齿面的电解磨削[J].中国表面工程,2009,22(2):53-55. 被引量:5
  • 9Kishore S G, Suhas S J. Modeling of material removal rate in micro-ECG process J ]. Manufacturing Science and Engineering, 2008, 130 ( 3 ) : 1 - 7.
  • 10Dabrowski L, Paczkowski T. Computer simulation of two-dimensional electrolyte flow in electrochemical machining I J ]- Russian Journal of Electrochemistry, 2005, 41(1):91 -98.

二级参考文献9

共引文献7

同被引文献55

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部