期刊文献+

液液引射器性能的数值模拟与实验 被引量:9

Numerical simulation and experimental investigation on performance of liquid-liquid ejector
下载PDF
导出
摘要 建立了液液引射器的三维数学模型,采用R134a制冷剂作为工质,模拟引射器主要结构参数与引射性能之间的变化关系.模拟结果表明:引射系数随喷嘴出口直径的减小而急剧增大,随混合室直径的增大而增大,随喷嘴与混合室之间距离的增大急剧下降;引射系数随着工作流体流量、喷嘴长度和扩散室长度的增大而缓慢上升;混合室长度对混合流体的压力场有较大影响,为使混合流体获得最佳的压力场,混合室最佳长度取45 mm.搭建了水平管降膜式空气源冷热水测试机组,试验结果表明:该引射器具有优良的引射性能;制冷系统负荷随着循环喷淋量的增加而增大,系统的性能系数随着循环喷淋量的增大呈现先增后减的趋势. A three-dimensional model of the ejector is proposed.And then the relations of main structural parameters with the jet performance of the ejector are simulated by using refrigerant R134a as the working fluid.Simulation results indicate that the entrainment ratio increases sharply with the decrease of the nozzle exit diameter,increases gradually with the increase of the mixing section di-ameter,and descends quickly with the increase of the distance between the nozzle exit and the mix-ing section inlet.And the entrainment ratio ascends slightly with the increase of the working fluid flow rate,nozzle length and diffuser length.Moreover,the mixing section length has a strong influ-ence on the pressure of the mixed fluid.To obtain the optimal pressure field of the mixing fluid,the optimum length of the mixing section is 45 mm.Finally,an air-source falling-film heat pump unit is established,and the experimental results show that the performance of the ejector is remarkable.And that the cooling load increases gradually with the increase of the circular spraying flow rate,moreo-ver,the performance coefficient increases first,and then decreases with the increment of the circular spraying flow rate.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第2期289-294,共6页 Journal of Southeast University:Natural Science Edition
基金 “十二五”国家科技支撑计划资助项目(2011BAJ03B05-03) 中国博士后基金面上资助项目(2012M520970)
关键词 引射器 引射系数 水平管降膜 循环喷淋量 ejector entrainment ratio horizontal-tube falling film circular spraying flow rate
  • 相关文献

参考文献12

  • 1He S, Li Y, Wang R Z. Progress of mathematical mod?eling on ejectors[J]. Renewable and Sustainable Ener?gy Reviews, 2009, 13( 8): 1760 -1780.
  • 2Chen XJ, Orner S, Worall M, et al. Recent develop?ments in ejector refrigeration technologies[J]. Renew?able and Sustainable Energy Reviews, 2013, 19: 629 - 651.
  • 3AbdulateefJ M, Sopian K, Alghoul M A, et al. Re?view on solar-driven ejector refrigeration technologies[J] . Renewable and Sustainable Energy Reviews, 2009, 13 (6/7) : 1338 - 1349.
  • 4Dahmani A, Aidoun Z, Galanis N. Optimum design of ejector refrigeration systems with environmentally benign fluids[J]. InternationalJournal of Thermal Sciences, 2011,50(8): 1562 -1572.
  • 5Zhu Y, Li Y. Novel ejector model for performance evaluation on both dry and wet vapors ejectors[J]. In?ternationalJournal of Refrigeration, 2009, 32 ( 1 ) : 21 -31.
  • 6Bergander MJ, Butrymowics D, Smierciew K, et al. Refrigeration cycle with ejector for second step compres?sion[CJ / / International Refrigeration and Air Condi- tioning Conference. West Lafayette, IN, USA, 2010: 2211-1-2211-8.
  • 7Chen X, Zhou Y, YuJ. A theoretical study of an inno?vative ejector enhanced vapor compression heat pump cycle for water heating application[J]. Energy and Buildings, 2011,43(12): 3331 -3336.
  • 8Sumeru K, Nasution H, Ani F N. A review on two phase ejector as an expansion device in vapor compres?sion refrigeration cycle[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 4927 -4937.
  • 9Bilir N, Ersoy H K. Performance improvement of the vapor compression refrigeration cycle by a two-phase constant area ejector[J]. InternationalJournal of Ener?gy Research, 2009, 33 ( 5) : 469 - 480.
  • 10SarkarJ. Geometric parameter optimization of ejector?expansion refrigeration cycle with natural refrigerants[J]. InternationalJournal of Energy Research, 2010, 34(1): 84-94.

同被引文献84

引证文献9

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部