期刊文献+

一个基于三元组存储的列式OLAP查询执行引擎 被引量:4

Column-Oriented Query Execution Engine for OLAP Based on Triplet
下载PDF
导出
摘要 大数据与传统的数据仓库技术相结合产生了大数据实时分析处理需要(volume+velocity),它要求大数据背景下的数据仓库不能过多地依赖物化、索引等高存储代价的优化技术,而要提高实时处理能力来应对大数据分析中数据量大、查询分析复杂等特点.这些查询分析操作一般表现为在事实表和维表之间连接操作的基础上对结果集上进行分组聚集等操作.因此,表连接和分组聚集操作是ROLAP(relational OLAP)性能的两个重要决定因素.研究了新硬件平台下针对大规模数据的OLAP查询的性能,设计新的列存储OLAP查询执行引擎CDDTA-MMDB(columnar direct dimensional tuple access-main memory databasequeryexecutionengine,直接维表元组访问的内存数据库查询执行引擎).基于三元组的物化策略,使得CDDTA-MMDB能够减少内存列存储模型上表连接操作访问基表和中间数据结构的次数.首先,CDDTA-MMDB将查询分解为作用在维表和事实表上的子查询,如果只涉及过滤操作,子查询将生成<代理键,布尔值>二元组;否则,子查询生成<代理键,关键字,值>三元组.然后,只需一趟扫描事实表,利用事实表的外键映射函数直接定位相应三元组或者二元组,完成相应的过滤、连接或聚集操作.CDDTA-MMDB充分考虑了内存列存储数据库的设计原则,尽量减少随机内存访问.实验结果表明:CDDTA-MMDB是高效的,与具代表性的列存储数据库相比,比MonetDB 5.5快2.5倍,比C-store的invisible join快5倍;并且,CDDTA-MMDB在多核处理器上具有线性加速比. Integrating big data and traditional data warehouse (DW) techniques bring demand for real-time big data analysis. The new demand means DW can not depend too much on the optimization such as materialization and indexing which consume large space, but instead needs to enhance ability of real-time analysis to handle big data analysis which usually issues complex queries on huge data volumes. Those queries usually consist in applying group or aggregation operator on the join result between fact table and dimension table(s). The join and group operation often are the bottle-necks for performance improvement. This paper studies the OLAP performance under the new hardware platform and big data environment, and develops a new OLAP query execution engine in columnar storage, called CDDTA-MMDB (columnar direct dimensional tuple access for main memory database query execution engine). The optimized materialization makes CDDTA-MMDB reduce access to base table and intermediate data structure during join procedure. CDDTA- MMDB decomposes the query into sub-queries on the fact table and dimension table respectively. If the sub-query on dimension table only serves as filter, it will produce the binary tuple (surrogate,Boolean_value); otherwise, it will produce the triplet in the form of (surrogate,key,value). Thus, by just scanning the fact table one-pass and utilizing the mapping function of foreign keys in fact table to directly access the binary tuples or triplets, the executor can accomplish the join, filter and group operations. Consideration is fully placed on the design principle for the main-memory columnar database. Experimental results show that the system is efficient and can be 2.5 times faster than MonetDB 5.5 and 5 times faster than invisible join used by C-store. Moreover, it scales linearly on multi-core processors.
出处 《软件学报》 EI CSCD 北大核心 2014年第4期753-767,共15页 Journal of Software
基金 国家科技重大专项(核高基)(2010ZX01042-001-002) 国家自然科学基金(61272138 61232007) 中国人民大学研究生科学研究基金(13XNH216)
关键词 大数据分析 联机分析处理 内存列存储数据库 表连接算法 物化策略 big data analysis OLAP main-memory columnar database join algorithm materialization
  • 相关文献

参考文献2

二级参考文献55

  • 1[OL].<http://hadoop.apache.org.>.
  • 2WinterCorp: 2005 TopTen Program Summary. http:// www. wintercorp, com/WhitePapers/WC TopTenWP. pdf.
  • 3TDWI Checklist Report: Big Data Analytics. http://tdwi. org/research/2010/08/Big-Data-Analytics, aspx.
  • 4Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. SIGMOD Rec, 1997,26(1): 65-74.
  • 5Madden S, DeWitt D J, Stonebraker M. Database parallelism choices greatly impact scalability. DatabaseColumn Blog. http://www, databasecolumn, com/2007/10/database-parallelism-choices, html.
  • 6Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters//Proceedings of the 6th Symposium on Operating System Design and Implementation (OSDI ' 04). San Francisco, California, USA, 2004: 137-150.
  • 7DeWitt D J, Gerber R H, Graefe G, Heytens M L, Kumar K B, Muralikrishna M. GAMMA--A high performance dataflow database machine//Proceedings of the 12th International Conference on Very Large Data Bases (VLDB' 86). Kyoto, Japan, 1986:228-237.
  • 8Fushimi S, Kitsuregawa M, Tanaka H. An overview of the system software of a parallel relational database machine// Proceedings of the 12th International Conference on Very Large DataBases(VLDB'86). Kyoto, Japan, 1986:209-219.
  • 9Brewer E A. Towards robust distributed systems//Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing (PODC' 00). Portland, Oregon, USA, 2000:7.
  • 10http: //www. dbms2, com/2008/08/26/known-applications of mapreduce/.

共引文献635

同被引文献31

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部