期刊文献+

基于节点分割的社交网络属性隐私保护 被引量:27

Attribute Privacy Preservation in Social Networks Based on Node Anatomy
下载PDF
导出
摘要 现有研究表明,社交网络中用户的社交结构信息和非敏感属性信息均会增加用户隐私属性泄露的风险.针对当前社交网络隐私属性匿名算法中存在的缺乏合理模型、属性分布特征扰动大、忽视社交结构和非敏感属性对敏感属性分布的影响等弱点,提出一种基于节点分割的隐私属性匿名算法.该算法通过分割节点的属性连接和社交连接,提高了节点的匿名性,降低了用户隐私属性泄露的风险.此外,量化了社交结构信息对属性分布的影响,根据属性相关程度进行节点的属性分割,能够很好地保持属性分布特征,保证数据可用性.实验结果表明,该算法能够在保证数据可用性的同时,有效抵抗隐私属性泄露. Recent research shows that social structures or non-sensitive attributes of users can increase risks of user sensitive attribute disclosure in social networks. Most of the existing private attribute anonymization schemes have many defects, such as lack of proper model, too much distortion on attributes distribution, neglect social structure and non-sensitive attributes' influence on sensitive attributes. In this paper, an attribute privacy preservation scheme based on node anatomy is proposed. It allocates original node's attribute links and social links to new nodes to improve original node's anonymity, thus protects user from sensitive attribute disclosure. Meanwhile, it measures social structure influence on attribute distribution, and splits attributes according to attributes' correlations. Experimental results show that the proposed scheme can maintain high data utility and resist private attribute disclosure.
出处 《软件学报》 EI CSCD 北大核心 2014年第4期768-780,共13页 Journal of Software
基金 国家自然科学基金(61232005 61100237) 深圳市战略新兴产业发展专项资金(CXZZ20120831113048965)
关键词 社交网络 属性隐私 匿名 节点分割 social network attribute privacy anonymity node anatomy
  • 相关文献

参考文献16

  • 1Zheleva E, Getoor L. To join or not to join: The illusion of privacy in social networks with mixed public and private user profiles. In: Proc. of the 18th Int'l Conf. on World Wide Web. ACM Press, 2009. 531-540. [doi: 10.1145/1526709.1526781].
  • 2Yang SH, Long B, Smola A, Sadagopan N, Zhcng Z, Zha H. Like like alike--Joint friendship and interest propagation in social networks. In: Sadagopan S, Ramamritham K, Kumar A, Ravindra MP, Bertino E, Kumar R, eds. Proc. of the 20th Int'l Conf. on World Wide Web. New York: ACM Press, 2011. 537-546.
  • 3Freeman LC. Centrality in social networks: Conceptual clarification. Social Networks, 1979,1(3):215-239.
  • 4Fard AM, Wang K, Yu PS. Limiting link disclosure in social network analysis through subgraph-wise perturbation. In: Proc. of the 15th Int'l Conf. on Extending Database Technology. ACM Press, 2012. 109-119. Idol: 10.1145/2247596.2247610].
  • 5Narayanan A, Shmatikov V. Robust de-anonymization of large sparse datasets. In: Proc. of the 2008. IEEE Symp. on Security and Privacy. IEEE, 2008. 111-125. [doi: 10.1109/SP.2008.33].
  • 6Barrat A, Barthelemy M, Pastor-Satorras R, Vespignan A. The architecture of complex weighted networks. Proc. of the National Academy of Sciences of the United States of America, 2004,101 (11):3747-3752. [doi: 10.1073/pnas.0400087101 ].
  • 7Mislove A, Viswanath B, Gummadi KP, Drusehel P. You are who you know: Inferring user profiles in online social networks. In: Proc. of the 3rd ACM Int'l Conf. on Web Search and Data Mining. ACM Press, 2010.251-260. [doi: 10.1145/1718487.1718519].
  • 8Anagnostopoulos A, Kumar R, Mahdian M. Influence and correlation in social networks. In: Proc. of the 14th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. ACM Press, 2008.7-15. [doi: 10.1145/1401890.1401897 ].
  • 9Yin Z, Gupta M, Weninger T, Han J. Linkrec: A unified framework for link recommen-dation with user attributes and graph structure. In: Rappa M, ed. Proc. of the 19th Int'l Conf. on World Wide Web. New York: ACM Press, 2010. 1211-1212.
  • 10Narayanan A, Shmatikov V. De-Anonymizing social networks. In: Proc. of the 2009 30th IEEE Symp. on Security and Privacy. IEEE, 2009. 173-187. Idol: 10.1109/SP.2009.22].

二级参考文献13

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献557

同被引文献211

  • 1韩启龙,赵洪斌,潘海为,印桂生,常吉羽.基于结构-属性的时空对象图聚类算法的研究[J].计算机研究与发展,2013,50(S1):154-162. 被引量:3
  • 2姜树元,姜青舫.定常风险偏好效用函数式及其参数确定问题[J].中国管理科学,2007,15(1):16-20. 被引量:14
  • 3晋瑾,平西建,张涛,陈明贵.图像中的文本定位技术研究综述[J].计算机应用研究,2007,24(6):8-11. 被引量:17
  • 4Yin Z,Gupta M,Weninger T.A unified framework for link re-commendation with user attributes and graph structure [C]∥Proceedings of the 19th International Conerence on World Wide Web.New York,USA,2010,6:1200-1212.
  • 5Chen J,et al.Make new friends,but keep the old:Recommend ing people on social networking sites[C]∥Proceeding of the 27th International Conference on Human Factors in Computing Systems.New York:ACM,2009,2:201-210.
  • 6Zaschke T,Zimmerli C,Norrie M C.The PH -Tree:A Space-Efficient Storage Structure and MultiDimen sional Index.Institute for information Systems[J].Department of Computer Science ETH Zu rich,Switzerland,2014,7:659-671.
  • 7Wolfe A W.Social network analysis:Methods and applications[J].Cambridge American Ethnologist,1997,24(1):210-230.
  • 8German U,Joanis E,Larkin S.Tightly Packed Tries:How to Fit Large Models into Memory,and Make them Load Fast,Too[C]∥Proc.of the NAACLHLT Workshop.2009,8:31-39.
  • 9Leskovec J,Lang K J,Mahoney M.Empirical comparision of algorithms for network community detection [C]∥Proceedings of the 19th International Conference on World Wide Web.New York:ACM,2010,9:630-655.
  • 10Alan M,Massimiliano M,Krishnap G,et al.Bhattacharjcc Bobby,Mcasurement and analysis of online social network[C]∥Proccedings of the 7th ACM SIGCOMM Conference on Internet Mcasurement.SanDiego,CA,USA,2007,5:29-45.

引证文献27

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部