期刊文献+

社会化媒体大数据多阶段整群抽样方法 被引量:9

Sampling Online Social Media Big Data Based Multi Stage Cluster Method
下载PDF
导出
摘要 在线社会化媒体大数据是行动者自组织关系的集合,其内部蕴含了多层次的社会实体关系,因此,在线社会化媒体大数据抽样方法的研究对于社会计算这一新兴研究领域具有重要的理论和应用价值.现有抽样方法存在大型马尔可夫链难以并行化、样本局部性陷入、马尔可夫链燃烧预热等问题.针对这些问题,提出了在线社会化媒体大数据整群多阶段抽样方法 OSM-MSCS.该方法首先进行整群分解,将总体分解成若干小型凝聚子群;而后,使用动态延迟拒绝方法对凝聚子群内部的关系抽样;最后,使用Gibbs方法完成不同凝聚子群之间相干关系的筛选,从而获得整个样本序列.实验结果表明,OSM-MSCS方法能够有效地对各种结构特征的在线社会化媒体大数据进行抽样,从"个体地位-群体凝聚性-整体结构性"这3个层次进行综合评价,其抽样效果要明显好于MHRW和BFS这两种最主流的抽样方法. The big data from online social media represents the relationship between the actors' self-organization. It contains multi-level social entity relationship. As an emerging field in recent years, online social media sampling method has important research value and practical significance in social computing. However, there are some problems in existing methods. For example, large Markov chain is difficult to parallelize, sampling is easy to be trapped in local, and there is concerns with Markov chain burn-in process. To address those issues, the paper presents a multi stage cluster sampling for online social media big data (OSM-MSCS). The proposed method first decomposes integral cluster into small cohesive subgroups, then uses delay rejection (DR) to sample typical online social relationship with parallel processing, and finally uses Gibbs sampling methods to choose interaction relationship in different cohesive subgroups to obtain the random sequence. Experimental results show that OSM-MSCS is an effective method for online social media big data, and its sampling technique is better than BFS and MHRW.
出处 《软件学报》 EI CSCD 北大核心 2014年第4期781-796,共16页 Journal of Software
基金 教育部中央高校基金(13SZYB01) 陕西省社科联重大理论与现实问题研究项目(2013C124) 中国电信"社会化媒体大数据云服务商业模式的研究"项目(SN2012-YS-13709)
关键词 在线社会化媒体 大数据 马尔可夫蒙特卡洛方法 多阶段整群抽样 online social media big data Markov chain Monte Carlo multi stage cluster sampling
  • 相关文献

参考文献28

  • 1Yunus M. Building Social Business: The New Kind of Capitalism That Serves Humanity's Most Pressing Needs. Philadelphia: Public Affairs, 2011.2-17.
  • 2Leung L. Generational differences in content generation in social media: The roles of the gratifications sought and of narcissism. Computers in Human Behavior, 2013,29(3):997-1006. [doi: 10.1016/j.chb.2012.12.028].
  • 3Becchetti L, Castillo C, Donato D, Fazzone A. A comparison of sampling techniques for Web graph characterization. In: Proc. of the Workshop on Link Analysis (LinkKDD 2006). New York: ACM Press, 2006. http://ailab.ijs.si/dunja/linkkdd2006/Papers/ becchetti.pdf [doi: 10.1.1.69.1736].
  • 4Leskovec J, Faloutsos C. Sampling from large graphs. In: Proc. of the 12th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. New York: ACM Press, 2006.631-636. [doi: 10.1145/1150402.1150479].
  • 5Mislove A, Marcon M, Gummadi KP, Druschel P, Bhattacharjee B. Measurement and analysis of online social networks. In: Proc. of the 7th ACM SIGCOMM Conf. on Internet Measurement. New York: ACM Press, 2007. 29-42. [doi: 10.1145/1298306. 1298311].
  • 6Amanda LT, Peter JM, Mason AP. Social structure of Facebook networks. Physica A, 2012,391:4165-4180. [doi: 10,1016/j.physa. 2011.12.021.
  • 7Ferrara E. A large-scale community structure analysis in Facebook. EPJ Data Science, 2012,1 (1): 1-30. [doi: 10.1140/epjds 1 ].
  • 8Ahmed N, Neville J, Kompella R. Network sampling via edge-based node selection with graph induction. Computer Science Technical Reports, 11-016, 2011.1-10.
  • 9Gjoka M, Kurant M, Butts CT, Markopoulou A. Practical recommendations on crawling online social networks. IEEE Journal on Selected Areas in Communications, 2011,29(9): 1872-1892. [doi: 10.1109/JSAC.2011.111011].
  • 10Goel S, Salganik MJ. Assessing respondent-driven sampling. Proc. of the National Academy of Sciences, 2010,107(15):6743-6747 [doi: 10.1073/pnas.1000261107].

同被引文献110

  • 1张引,陈敏,廖小飞.大数据应用的现状与展望[J].计算机研究与发展,2013,50(S2):216-233. 被引量:377
  • 2汤后林,吕繁.难以接近人群和隐蔽人群调查研究的抽样方法[J].现代预防医学,2007,34(12):2258-2259. 被引量:3
  • 3朱晓艳,康殿民,廖玫珍,刘学真,傅继华.同伴推动抽样法的应用[J].预防医学论坛,2007,13(7):632-635. 被引量:4
  • 4金勇进,桂子芳,蒋妍,编著抽样技术(第三版)[M].北京:中国人民大学出版社,2012.
  • 5中国互联网络信息中心.2014年中国社交类应用用户行为研究报告[EB/OL].http://www.cnnic.net.Cn/hlwfzyj/hlwxzbg/sqb∥201408,t2014082247860.htm.2014-08-22.
  • 6孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1072
  • 7Du Y,He Y,Tian Y,et al..Microblog bursty topic detection based on user relationship[C].IEEE 6th Joint International Information Technology and Artificial Intelligence Conference (ITAIC),Chongqing,China,2011,1:260-263.
  • 8Choromanska A,Jebara T,Kim H,et al..Fast spectral clustering via the nystr?m method[C].Proceedings of the 24th International Conference,Algorithmic Learning Theory 2013,Singapore,2013:367-381.
  • 9Hearn T A and Reichel L.Fast computation of convolution operations via low-rank approximation[J].Applied Numerical Mathematics,2014,(75):136-153.
  • 10Gajjar M R,Sreenivas T V,and Govindarajan R.Fast computation of Gaussian likelihoods using low-rank matrix approximations[C].2011 IEEE Workshop on Signal Processing Systems (SiPS),Beirut,Lebanon,2011:322-327.

引证文献9

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部