摘要
设X_1,…,X_q(q<n)是有界区域ΩR^n上的一组光滑Hrmander向量场.考虑下面的散度型抛物方程:u_t+X_i~*(a_(ij)(x,t)X_ju)=X_i~*f_i,其中X_i~*是X_i的形式伴随,系数a_(ij)(x,t)(i,j=1,2,…,q)是定义在Ω_T=Ω×(0,T)∈R^(n+1)上满足一致椭圆性条件的有界可测函数.在系数属于VMO_(loc)∩L~∞函数空间的情况下,得到了抛物方程弱解的内W_*^(1,p)正则性.
Let W1,p* be a family of real smooth vector fields satisfying HSrmander's condition in a bounded domain Ω Rn. We are concerned with the following divergence parabolic equation: ut+x*i(aij(x,)Xju)=X*i fi where X*i is the formal adjoint of Xi, the coefficients aij(x,t) (i,j = 1,2,… ,q)valued bounded measurable functions defined in ΩT=Ω×(0,T)∈Rn+1 , satisfying the uniform ellipticity condition. Under the assumption that the coefficients aij(x, t) belong to the space VMOloc∩L∞, the interior WI'p regularity for weak solutions of the equation above is established.
出处
《数学年刊(A辑)》
CSCD
北大核心
2014年第1期1-20,共20页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.11001221,No.11271299)的资助
关键词
散度型抛物方程
W1
p*
正则性
Hormander向量场
弱紧性
不连续系数
Divergence parabolic equations, Interior W1,p* regularity, Hormander'svector fields, Weak compactness, Discontinuous coeiYicients