期刊文献+

方腔热对流大规模数值模拟及其软硬湍流特性 被引量:1

Massive numerical simulation and the characteristics of soft and hard turbulence in 2-D Rayleigh-Bénard thermal convection
原文传递
导出
摘要 该文对二维Rayleigh-Bénard(RB)热对流进行了大规模并行DNS模拟计算。计算中采用了上海超级计算机中心的1024个节点,获得了Pr?0.7,Ra?5×107―8×1011范围内一系列的计算数据和结果。研究结果发现:在二维RB热对流中存在不同的流态,当Ra小于6×108的流动状态为软湍流状态,Ra大于6×108为硬湍流状态;在软湍流状态大尺度环流(LSC)和角区旋涡保持相对稳定,LSC内涡量很小,在硬湍流状态,角区旋涡从边界层内脱落,进入到LSC中随之一起运动,且在LSC内存在大量的小涡旋;并且软湍流和硬湍流在传热效率上具有不同的标度率。 Massive parallel direct numerical simulation (DNS) of two-dimensional (2-D) Rayleigh-B6nard (RB) convection is studied. A series of results spanned the range of 5×10^7 -〈 Ra 〈 8×10^11 and Pr = 0.7 are obtained using 1024 computational nodes at Shanghai Supercomputer Center (SSC). It is found that there are different flow patterns in 2-D RB thermal convection. The flow is soft turbulence when Ra less than 6×10^8. When Ra greater than 6×1^08, the flow becomes hard turbulence. The large-scale circulation (LSC) and the comer vortices are stable in soft turbulence. The vorticity of LSC is small. In hard turbulence, the comer vortices detach from the boundary layer, go into LSC and move along with it. There are a lot of small vortices in LSC. The scaling laws of heat transport in the two flow patterns are different.
出处 《水动力学研究与进展(A辑)》 CSCD 北大核心 2014年第1期34-39,共6页 Chinese Journal of Hydrodynamics
基金 国家自然科学基金项目(11372362)~~
关键词 RB热对流 并行计算 湍流 DNS Rayleigh-Brnard thermal convection, parallel computing, turbulence, direct numerical simulation (DNS)
  • 相关文献

参考文献14

  • 1HESLOT F, CASTAING B, LIBCHABER A. Transitio- ns to turbulence in helium gas[J]. Physical Review A, 1987, 36(12): 5870-5873.
  • 2CASTA1NG G, GUNARATNE F, HESLOT L, et al. Scaling of hard thermal turbulence in Rayleigh-B6nard convection[J]. Journal of Fluid Mechanics, 1989, 204: 1-30.
  • 3GROSSMANN S and LOHSE D. Scaling in thermal convection: A unifying view[J]. Journal of Fluid Me- chanics, 2000, 407: 27-56.
  • 4AHLERS G, GROSSMANN S, LOHSE D. Heat tran- sfer and large scale dynamics in turbulent Rayleigh- B6nard convection[J]. Reviews of Modem Physics, 2009, 81(2): 503-537.
  • 5郗恒东,孙超,夏克青.湍流热对流中的动力学和传热研究[J].物理,2006,35(4):265-268. 被引量:11
  • 6ZHOU Q, SUN C, XIA K Q. Experimental investigation of homogeneity, isotropy, and circulation of the velocity field in buoyancy-driven turbulence[J]. Journal of Fluid Mechanics, 2008, 598: 361-372.
  • 7ZHOU Q, STEVENS R J A M, SUGIYAMA K, et al. Prandtl-Blasius temperature and velocity boundary- layer profiles in turbulent Rayleigh-B6nard conve- ction[J]. Journal of Fluid Mechanics, 2010, 664: 297- 312.
  • 8ZHOU Q, XIA K Q. Measured instantaneous viscous boundary layer in turbulent Rayleigh-B6nard conve- ction[J]. Physical Review Letters, 2010, 104(10): 104301.
  • 9SHISHKINA O, WAGNER C. Analysis of thermal dis- sipation rates in turbulent Rayleigh-B6nard conve- ction[J]. Journal of Fluid Mechanics, 2006, 546: 51-60.
  • 10SHISHKINA O, WAGNER C. Local heat fluxes in tur- bulent Rayleigh-B6nard convection[J]. Physics of Fluids, 2007, 19(8): 085107.

二级参考文献28

  • 1郗恒东,孙超,夏克青.湍流热对流中的动力学和传热研究[J].物理,2006,35(4):265-268. 被引量:11
  • 2Xi H D, Lam S, Xia K Q. J. Fluid. Mech. , 2004, 503:47.
  • 3Kraichnan R H, Phys. Fluids. , 1962, 5:1374.
  • 4Castaing B, Gunaratne G, Heslot F et al. J. Fluid. Mech. , 1989, 204 : 1.
  • 5Shraiman B I, Siggia E D. Phys. Rev. A. , 1990, 42:3650.
  • 6Siggia E D. Annu. Rev. Fluid. Mech, , 1994, 26:137.
  • 7Kadanoff L P. Physics Today, 2001, 54(8) :34.
  • 8Roche P E, Castaing B, Chabaud B et al. Europhys. Lett. , 2002, 58:693.
  • 9Niemela J J, Sreenivasan K R. J. Fluid, Mech., 2003, 481:355.
  • 10Krishnamurti R, Howard L N. Proc, Natl. Aead. Sci. USA. , 1981, 78:1981.

共引文献10

同被引文献1

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部