期刊文献+

基于可能性C-均值的鲁棒多视角聚类算法 被引量:3

Robust multi-view clustering algorithm based on possibilistic C-means
原文传递
导出
摘要 目前多数多视角聚类算法不考虑噪声问题,为了更有效地分析含有噪声数据的聚簇结构,提出了一种基于可能性C-均值的鲁棒多视角聚类(PCM-RMVC)算法,该算法同时利用多个视角空间中的特征信息,最小化每个视角空间中数据对象与聚簇中心的距离.推导出数据隶属度和每个视角权重的迭代更新规则,设计出聚类过程的迭代算法.实验表明:PCM-RMVC算法对噪声具有较强的鲁棒性,并且聚类效果优于五种有代表性的多视角聚类算法. Most exiting multi-view clustering algorithms ignore the problem of noise.In order to analysis the cluster structure of data which containing noise more efficiently,a robust multi-view clustering algorithm based on possibilistic C-means(PCM-RMVC)was proposed.The feature information in multi-view space was simultaneously incorporated and the distances between objects and cluster centers in each view space were minimized.The update rules for fuzzy memberships of objects and weights of feature spaces were derived,and then an iterative algorithm was designed for the clustering process.Experimental studies show that the PCM-RMVC algorithm is robust to noise and the qualities of clustering results of PCM-RMVC are superior to five representative algorithms.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第3期58-63,共6页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(71272216) 国家科技支撑计划资助项目(2012BAH08B02) 中央高校基本科研业务费专项资金资助项目(HEUCF10063 HEUCFZ1212)
关键词 数据挖掘 聚类 可能性C-均值 鲁棒性 多视角数据 聚簇数目 data mining clustering possibilistic C-means robust multi-view data number of clus-ters
  • 相关文献

参考文献22

  • 1Liu Xinhai, Glanzel W, Moor B D. Hybrid clustering of multi-view data via Tucker-2 model and its applica- tion[J].Scientometrics, 2011, 88(3): 819-839.
  • 2Wang Xiang, Qian Buyue, Ye Jieping, et al. Multi objective multi-view spectral clustering via pareto op timization[C]//Proc of the 13th SIAM International Conference on Data Mining. Philadelphia.. SIAM, 2013: 234-242.
  • 3Kumar A, Hal Daum: III. A co-training approach for multi-view spectral clustering[C]//Proc of the 28th IEEE International Conference on Machine Learning. Piscataway: IEEE, 2011: 393-400.
  • 4Kumar A, Rai P, Hal Daum: III. Co-regularized multi-view spectral clustering[C]//Proc of the 24th Advances in Conference on Neural Information Pro- cessing Systems. Cambridge.. MIT, 2011: 1413- 1421.
  • 5Eaton E, DesJardins M, Jacob S. Multi view cluste- ring with constraint propagation for learning with an incomplete mapping between views[C]//Proc of the 19th ACM International Conference on Information and Knowledge Management. New York: ACM, 2010: 389-398.
  • 6Blaschko M B, Lampert C H. Correlational spectral clustering[C]//Proc of the 21st IEEE Conference on Computer Vision and Pattern Recognition. Piscat- away: IEEE, 2008: 1-8.
  • 7Liu Jialu, Wang Chi, Gao Jing, et al. Multi view clustering via joint nonnegative matrix factorization [C]//Proc of the 13th SIAM International Conference on Data Mining. Philadelphia: SIAM, 2013: 252- 260.
  • 8Jiang Yu, Liu Jing, Li Zechao, et al. Collaborative PLSA for multi-view clustering[C]//Proc of the 21st International Conference on Pattern Recognition. San Francisco: Morgan Kaufmann, 2012: 2997-3000.
  • 9Tzortzis G, Likas A. Kernel-based weighted multi view clustering[C]//Proc of the 12th IEEE Interna tional Conference on Data Mining. Piscataway: IEEE, 2012: 675-684.
  • 10Long B, Yu P, Zhang Z. A general model for multi- ple view unsupervised learning[C]//Proc of the 8th SIAM International Conference on Data Mining. Philadelphia= SIAM, 2008.. 822-833.

同被引文献32

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部