期刊文献+

星载大相对孔径宽视场成像光谱仪光学系统设计 被引量:23

Optical System Design of Large Relative-Apertureand Wide Field of View Spaceborne Imaging Spectrometer
原文传递
导出
摘要 高分辨率大相对孔径宽视场成像光谱仪已成为星载海洋水色遥感等领域的迫切需求,根据大相对孔径和宽视场的研究目标,采用折叠Schmidt望远成像系统与改进型Dyson光谱成像系统匹配的结构型式,设计了一个相对孔径1/1.2、视场3.9°,工作波段0.35~1.05μm的航天遥感成像光谱仪光学系统。基于像差理论,分析了改进型Dyson光谱成像系统球差校正原理。运用光学设计软件ZEMAX对成像光谱仪光学系统进行了光线追迹和优化,并对设计结果进行了分析。分析结果表明,光学系统在各个波长的光学传递函数均达到0.77以上,谱线弯曲和谱带弯曲均小于6%像元,便于光谱和辐射定标,完全满足设计指标要求,且结构紧凑,非常适合应用于航天遥感。 Spaceborne ocean colour remote sensing urgently requires large relative-aperture and wide field of view imaging spectrometer. Based on the research objective of large relative-aperture and wide field of view, a spaceborne imaging spectrometer optical system is designed using a imaging system. The relative-aperture of which is 1/1.2, folded Schmidt telescope and a modified Dyson spectral the field of view of hyperspectral image is 3.9°, and the working waveband is from 0.35 μm to 1.05 μm. Based on the aberration theory, the principle of spherical aberration correcting is analyzed in modified Dyson spectral imaging system. Ray tracing, optimization and the analysis of the design results are performed by ZEMAX software. The analyzed results demonstrate that the MTFs for different wavelengths are all about 0,77, both the line bending and the band bending of the spectrum are less than 6 % of the pixel, which is easy for spectral and radiometric calibration. The design results satisfy the requirements of specifications with a small volume and suitable for spaceborne remote sensing.
作者 薛庆生
出处 《中国激光》 EI CAS CSCD 北大核心 2014年第3期253-259,共7页 Chinese Journal of Lasers
基金 国家自然科学基金项目(41105014)
关键词 光学设计 成像光谱仪 Schmidt望远成像系统 Dyson光谱成像系统 海洋水色 optical design imaging spectrometer Schmidt telescope imaging system Dyson spectral imagingsystem ocean colour
  • 相关文献

参考文献14

二级参考文献93

  • 1郑玉权.小型Offner光谱成像系统的设计[J].光学精密工程,2005,13(6):650-657. 被引量:53
  • 2李幼平,禹秉熙,韩昌元,李柱.成像光谱仪工程权衡优化设计的光学结构[J].光学精密工程,2006,14(6):974-979. 被引量:20
  • 3Alexander F. H. Goetz, Gregg Vane Jerry E. Solomon, Barrett N. Rock. Imaging spectrometry for earth remote sensing [J]. Science, 1985, 228(4704): 1147-1153.
  • 4Roland GEYL. Design and fabrication of a three mirror flat field anastigmat for high resolution earth observation [C]. SPIE, 1994, 2210:739-746.
  • 5F. Blechinger, D. E. Charlton, R. Davaneens et al.. High resolution imaging spectrometer "HRIS" optics, focal plane and calibration[C]. SPIE, 1993, 1937:207-224.
  • 6Mark A. F. , Jay P. , Lushalan B. L. et al.. EO-1/Hyperion hyperspeetral imager design, development, characterization,and calibration[C]. SPIE, 2001, 4151:40-51.
  • 7Thomas Wilson, Curtiss Davis. Naval EarthMap Observer (NEMO) satellite[C]. SPIE, 1999, 3753:2-11.
  • 8Jun-ichi Ishigaki, Toshihiro Okamura, Kunihiro Tanikawa et al.. Designing and testing of off-axis three-mirror optical system for multispectral sensor[C]. SPIE, 1997, 3061:356-369.
  • 9Pearlman Jay, Segal Carol, Lushalan Liao et al.. Development and operations of the EO-1 Hyperion imaging spectrometer [C]. SPIE, 2004, 4135:243-253.
  • 10Wilson Thomas, Curtiss Davis. Naval earthmap observer (NEMO) satellite[C]. SPIE, 1999, 3753:1-11.

共引文献157

同被引文献299

引证文献23

二级引证文献160

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部