期刊文献+

A new explicit multisymplectic integrator for the Kawahara-type equation

A new explicit multisymplectic integrator for the Kawahara-type equation
下载PDF
导出
摘要 We derive a new multisymplectic integrator for the Kawahara-type equation which is a fully explicit scheme and thus needs less computation cost. Multisympecticity of such scheme guarantees the long-time numerical behaviors. Nu- merical experiments are presented to verify the accuracy of this scheme as well as the excellent performance on invariant preservation for three kinds of Kawahara-type equations. We derive a new multisymplectic integrator for the Kawahara-type equation which is a fully explicit scheme and thus needs less computation cost. Multisympecticity of such scheme guarantees the long-time numerical behaviors. Nu- merical experiments are presented to verify the accuracy of this scheme as well as the excellent performance on invariant preservation for three kinds of Kawahara-type equations.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期99-103,共5页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant Nos.11271195 and 11271196) the Project of Graduate Education Innovation of Jiangsu Province,China(Grant No.CXZZ12-0385)
关键词 Kawahara-type equation multisymplectic integrator Euler-box scheme adjoint scheme Kawahara-type equation, multisymplectic integrator, Euler-box scheme, adjoint scheme
  • 相关文献

参考文献28

  • 1Kawahara T 1972 J.Phys.Soc.Jpn.33 260.
  • 2Hunter J K and Scheurle J 1988 Physica D 32 253.
  • 3Kaya D and Al-Khaled K 2007 Phys.Lett.A 363 433.
  • 4Yuan J M,Shen J and Wu J H 2008 J.Sci.Comput.34 48.
  • 5Hu W P and Deng Z C 2008 Chin.Phys.B 17 3923.
  • 6Ceballos J C,Sepúlveda M and Villagrán O P V 2007 Appl.Math.Comput.190 912.
  • 7Bibi N,Tirmizi S I A and Haq S 2011 Appl.Math.2 608.
  • 8Marsden J E,Patrick G W and Shkoller S 1998 Commun.Math.Phys.199 351.
  • 9Bridges T J and Reich S 2001 Phys.Lett.A 284 184.
  • 10Reich S 2000 J.Comput.Phys.157 473.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部