期刊文献+

Theoretical research on electron beam modulation in a field-emission cold cathode electron gun 被引量:1

Theoretical research on electron beam modulation in a field-emission cold cathode electron gun
下载PDF
导出
摘要 In order to develop miniaturized and integrated electron vacuum devices, the electron beam modulation in a field- emission (FE) electron gun based on carbon nanotubes is researched. By feeding a high-frequency field between the cathode and the anode, the steady FE electron beam can be modulated in the electron gun. The optimal structure of the electron gun is discovered using 3D electromagnetism simulation software, and the FE electron gun is simulated by PIC simulation software. The results show that a broadband (74-114 GHz) modulation can be achieved by the electron gun with a rhombus channel, and the modulation amplitude of the beam current increases with the increases in the input power and the electrostatic field. In order to develop miniaturized and integrated electron vacuum devices, the electron beam modulation in a field- emission (FE) electron gun based on carbon nanotubes is researched. By feeding a high-frequency field between the cathode and the anode, the steady FE electron beam can be modulated in the electron gun. The optimal structure of the electron gun is discovered using 3D electromagnetism simulation software, and the FE electron gun is simulated by PIC simulation software. The results show that a broadband (74-114 GHz) modulation can be achieved by the electron gun with a rhombus channel, and the modulation amplitude of the beam current increases with the increases in the input power and the electrostatic field.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期550-554,共5页 中国物理B(英文版)
基金 Project supported by the National Basic Research Program of China(Grant No.2013CB933603) the National Natural Science Foundation of China(Grant Nos.U1134006 and 61101041)
关键词 carbon nanotubes cold cathode field emission electron gun carbon nanotubes, cold cathode, field emission, electron gun
  • 相关文献

参考文献14

  • 1Sun L M,Yuan X S,Zhang Y,Li X Y,Yang H and Yan Y 2013 J.Infrared Millim.Waves 32 400.
  • 2Wei Z 2001 Vacuum Microelectronics (New York: John Wiley & Sons) pp.13–30.
  • 3Wang Y Y,Li Y A,Xu J S and Gu G R 2012 Chin.Phys.B 21 087902.
  • 4Legagneux P,Sech N L,Guiset P,Gangloff L,Cojocaru C,Schnell J P,Pribat D,Teo K B K,Robertson J,Milne W I,Andre F,Rozier Y and Dieumegard D 2009 Vacuum Electronics Conference IVEC ’09.IEEE International,April 28–30,2009 Rome,Italy,p.80.
  • 5Li Z H and Wang M 2001 Acta Phys.Sin.50 790 (in Chinese).
  • 6Zhang Y,Deng S Z,Duan C Y,Chen J and Xu N S 2008 J.Vac.Sci.Technol.B 26 106.
  • 7Guo P S,Chen T,Cao Z Y,Zhang Z J,Chen Y W and Sun Z 2007 Acta Phys.Sin.56 6705 (in Chinese).
  • 8Zhao X Y,Liu W M,Hou S M,Zhao X Y,Shi Z J,Gu Z N,Liu W M and Xue Z Q 2001 Acta Phys.Sin.50 1805 (in Chinese).
  • 9Liao F J 2008 Vacuum Electronics (2nd edn.) (Beijing: National Defence Industry Press) p.193 (in Chinese).
  • 10Teo K B K,Minoux E,Hudanski L,Peauger F,Schnell J P,Gangloff L,Legagneux P,Dieumegard D,Amaratunga G A J and Milne W I 2005 Nature 437 968.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部