期刊文献+

Coupling interaction between a single emitter and the propagating surface plasmon polaritons in a graphene microribbon waveguide

Coupling interaction between a single emitter and the propagating surface plasmon polaritons in a graphene microribbon waveguide
下载PDF
导出
摘要 The coupling interaction between an individual optical emitter and the propagating surface plasmon polaritons in a graphene microribbon (GMR) waveguide is investigated by numerical calculations, where the emitter is situated above the GMR or in the same plane of the GMR, The results reveal a multimode coupling mechanism for the strong interaction between the emitter and the propagating plasmonic waves in graphene. When the emitter is situated in the same plane of the GMR, the decay rate from the emitter to the surface plasmon polaritons increases more than 10 times compared with that in the case with the emitter above the GMR. The coupling interaction between an individual optical emitter and the propagating surface plasmon polaritons in a graphene microribbon (GMR) waveguide is investigated by numerical calculations, where the emitter is situated above the GMR or in the same plane of the GMR, The results reveal a multimode coupling mechanism for the strong interaction between the emitter and the propagating plasmonic waves in graphene. When the emitter is situated in the same plane of the GMR, the decay rate from the emitter to the surface plasmon polaritons increases more than 10 times compared with that in the case with the emitter above the GMR.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期555-559,共5页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant Nos.51172030,11274052,51102019,51172208,and 61274015) the National Basic Research Program of China(Grant No.2010CB923200)
关键词 GRAPHENE coupling interaction surface plasmon polariton graphene, coupling interaction, surface plasmon polariton
  • 相关文献

参考文献27

  • 1Gramotnev D K and Bozhevolnyi S I 2010 Nat.Photon.4 83.
  • 2Wu X F,Zhang J S,Li Z,Liu Y L and Gong Q H 2009 Chin.Phys.Lett.26 057302.
  • 3Zhong R B,Liu W H,Zhou J and Liu S G 2012 Chin.Phys.B 21 117303.
  • 4Chen J J,Li Z,Zhang J S and Gong Q H 2008 Acta Phys.Sin.57 5893 (in Chinese).
  • 5Zhang H F,Cao D,Tao F,Yang X H,Wang Y,Yan X N and Bai L H 2010 Chin.Phys.Lett.19 027301.
  • 6Fang Z Y,Thongrattanasiri S,Schlather A,Liu Z,Ma L L,Wang Y M,Ajayan P M,Nordlander P,Halas N J and de Abajo F J G 2013 ACS Nano 7 2388.
  • 7Zhao J Q,Wang YG,Yan P G,Ruan S C,Cheng J Q,Du G G,Yu Y Q,Zhang G L,Wei H F,Luo J and Tsang Y H 2012 Chin.Phys.Lett.29 114206.
  • 8Koppens F H L,Chang D E and de Abajo F J G 2011 Nano Lett.11 3370.
  • 9Jablan M,Bujan H and Soljacic M 2009 Phys.Rev.B 80 245435.
  • 10Li Z Q,Henriksen E A,Jiang Z,Hao Z,Martin M C,Kim P,Stormer H L and Basov D H 2008 Nat.Phys.4 532.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部