期刊文献+

SeN_2自由基解析势能函数的耦合簇理论研究

Coupled-cluster single-double theory study on the analytic potential energy function of the SeN_2 radicals
原文传递
导出
摘要 利用单双迭代耦合簇理论CCSD结合相关一致四重基组cc-pVQZ对SeN2基态的平衡结构和谐振频率进行了优化计算.计算结果表明:基态SeN2自由基分子稳定态为C2v构型,基态电子组态为X1A1,平衡核间距RSe-N=0.1691 nm,RN-N=0.1970 nm,αN-Se-N=71.289?,离解能De=4.78 eV.基态简正振动频率分别为:ν1=326.9288 cm-1,ν2=808.0161 cm-1以及ν3=948.3430 cm-1.对SeN基态和N2基态采用上述相同方法进行几何构型与谐振频率的计算并进行单点能扫描,使用Murrell-Sorbie函数进行最小二乘拟合得到其势能函数和光谱常数,通过和其他理论值以及实验值做比较,显示本文的计算工作达到了很高的精度.应用多体项展式理论导出了基态SeN2的全空间解析势能函数,其势能函数等值势能图准确再现了SeN2分子的结构特征和能量变化. The coupled-cluster single-double (CCSD) theory in combination with the quadruple correlation-consistent basis set (cc-pVQZ) of Dunning and co-workers is employed to estimate the equilibrium geometry, dissociation energy and vibrational frequencies of the SeN2 radical. The computational results show that the ground state of SeN2 has C2v symmetry and its ground electronic state is X^1A1. The equilibrium parameters of the structure are RSe-N=0.1691 nm, RN-N =0.1970 nm, αN-Se-N =71.289?, and the dissociation energy is De =4.78 eV. The vibrational frequencies areν1 = 326.9288 cm^-1, ν2 = 808.0161 cm^-1, and ν3 = 948.3430 cm^-1, respectively. The whole potential curves for the ground electronic states of SeN and N2 are further scanned using the above method, the potential energy functions and relevant spectroscopic constants are then obtained by least square fitting to the Murrell-Sorbie function. Compared with other theoretical results and the experimental values, our computational results are very accurate. Then the analytic potential energy function of SeN2 is derived by many-body expansion theory. The potential curves correctly describe the configurations and the dissociation energy for the SeN2 radical.
作者 曾晖 赵俊
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第6期137-141,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11304022 11347010) 湖北省教育厅科学研究项目(批准号:Q20131208 T201204) 长江大学优秀青年教师支持计划(批准号:cyq201321 cyq201322) 长江大学基础学科科学研究发展基金支持计划(批准号:2013cjp10)资助的课题~~
关键词 解析势能函数 多体项展式理论 SeN2 analytic potential energy function, many-body expansion theory, SeN2
  • 相关文献

参考文献1

二级参考文献11

  • 1胡宗球,丁瑜,胡学步,祝心德,宋发辉,王成刚.化合物CF_3IXY(X,Y=F,Cl,Br,I)成键特性的理论研究[J].华中师范大学学报(自然科学版),2004,38(3):326-329. 被引量:2
  • 2蒋启军,王婷婷,曾和平.C_(60)-P-苯并咪唑衍生物分子结构和电子光谱的理论研究[J].华中师范大学学报(自然科学版),2005,39(3):358-361. 被引量:3
  • 3刘玉芳,蒋利娟,刘振中,孙金锋.BeH分子第一激发双重态A^2Π的结构与势能函数[J].河南师范大学学报(自然科学版),2005,33(4):43-45. 被引量:12
  • 4Jenkins D B, Roobottom H K. Relationships among Ionic lattice energies, molecular(formula unit)volumes and thermochemical radii[J]. Inorg Chem, 1999, 38 (16):3 609- 3 620.
  • 5Bach R S, Mi Jiang Sulin.Organoseienium compounds:comparison of computational ethods, geometries and electron density distribution[J]. Internet J Chem, 1998,4S (3) : 698-704.
  • 6Harding L, Jones W E, Yee K K. Electronic speetrum of the N^80 Se molecule in the region 2840-3200 A[J]. Can J Phys, 1971, 49: 2 033-2 039.
  • 7Yee K K, Jones W E, New electronic emission spectra of the NSe radical[J]. J MolSpectrosc, 1971, 37:304-311.
  • 8Daumont D, Jenouvrier A, Pascat B, Sur l'analyse vibrationnelle du systeme A(A^2Ⅱr) - X(^2Ⅱ(a)r) de NSe. Etude des deuxsous-systemes et mise en evidence defortes perturbations vibrationnelles dans lesous-systeme 3/2[J]. Sci Paris Ser C, 1970, 271:712-715.
  • 9Daumont D, Jenouvrier A, Pascat B. Etats de valence de NSe: raise en evidence d'un etat a(^4Ⅱi) [J]. Can J Phys, 1976, 54:1 292-1 301.
  • 10Huber K P, Herzberg G. Molecular Spectra and Molecular Structure Ⅳ. Constants of data mic molecules[M]. National Research Council of Canada with the Comperation(the frist edition), 1994.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部