期刊文献+

射频击穿等离子体对高功率微波传输特性的影响 被引量:9

High power microwave propagation properties in radio frequency breakdown plasma
原文传递
导出
摘要 利用极化正交的高功率微波合路器,开展了等离子体对于微波传输特性的实验研究.通过改变前级源的功率和脉冲宽度,使得在合路器耦合缝处发生射频击穿,产生等离子体.等离子体扩散进入微波传输主通道,对于高功率微波的传输产生明显的影响,导致微波能量吸收和极化的偏转.初步实验结果表明,等离子体扩散到主通道中心的时间约为3μs,扩散速度约为1μs/cm,等离子体的恢复时间约为5μs.实验测得等离子体导致的微波极化方向最大偏转角度约为4.1?,此时通道内电子个数约为3.7×1015,极化偏转角度与电子数密度以及微波频率相关. The effect of plasma on the microwave propagation properties is investigated experimentally by using a high power microwave combiner. The plasma is generated by radio-frequency breakdown on the coupling slit of the combiner through changing the power or pulse width of the prime microwave source. The plasma diffuses from the slit to the high power microwave transmission channel, and induces the absorption of microwave energy and the rotation of microwave polarization. The results show that the spread velocity of plasma is about 1 μs/cm, and the duration is about 5 μs. The polarization rotating angle is determined by electron density and microwave frequency. The maximum rotating angle is 4.1° while the number of electron is about 3.7×10^15.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2014年第6期154-158,共5页 Acta Physica Sinica
关键词 高功率微波 等离子体 射频击穿 high power microwave plasma radio freyuency breakdown
  • 相关文献

参考文献2

二级参考文献19

  • 1谢鸿全,刘濮鲲,李承跃,鄢扬,刘盛纲.等离子体填充波纹波导中低频模式特性分析[J].物理学报,2004,53(9):3114-3118. 被引量:7
  • 2刘濮鲲,熊彩东,刘盛纲,唐昌建,钱尚介.一种新的等离子体脉塞系统——离子通道电子回旋脉塞[J].物理学报,1997,46(5):892-896. 被引量:16
  • 3Carmel Y, Lou W R, Antonsen T M, Rodgers J, Levush B, Destler W W, Granalstein V L 1992 Phys. Fluids B 4 2286.
  • 4Loza O T, Shkvarunets A G, Strelkov P S 1998 IEEE Trans. Plasma Sci. 26 615.
  • 5Liu S G, Barker R J, Zhu D J, Yan Y, Gao H 2000 IEEE Trans. Plasma Sci. 28 2135.
  • 6Liu S G, Barker R J, Yan Y, Zhu D J 2000 IEEE Trans. Plasma Sci, 28 2152.
  • 7Ito H, Nishida Y, Yugami N 1996 Phys. Rev. Lett. 76 4540.
  • 8Xu X, Yugami N, Nishida Y 1997 Phys. Rev. E 55 3328.
  • 9Rajyaguru C, Fuji T, Ito H, Yugami N, Nishida Y 2001 Phys. Rev. E 64 016403.
  • 10Ito H, Rajyaguru C, Yugami N, Nishida Y, Nishida Y 2004 Phys. Rev. E 69 066406.

共引文献17

同被引文献57

  • 1刘振林,杨光,段难,万华翔.高功率微波导弹对战场环境的影响及对抗技术研究[J].微波学报,2020,36(S01):358-361. 被引量:4
  • 2YUAN ZhongCai & SHI JiaMing State Key Laboratory of Pulse Power Laser Technology, Key Lab of Infrared and Low Temperature Plasma of Anhui Province, Hefei Electronic Engineering Institute, Hefei 230037, China.Research on EM pulse protection property of plasma-microwave absorptive material-plasma sandwich structure[J].Science China(Technological Sciences),2010,53(12):3221-3224. 被引量:6
  • 3Chengqing Wu,Hong Hao.Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions[J].International Journal of Impact Engineering.2004(6)
  • 4Barker R J, Schamiloglu E. High-Power Microwave Sources and Technologies [C]. Institute of Electrical and Electronics Engineers, 2001.
  • 5Sheppard S T, Doverspike K, Pribble W L, etal. IEEE Electron Device Letters[C], 1999,20: 161--163.
  • 6Hegeler F, Schamiloglu E, Korovin S D, et al. Recent Advances In The Study of a Long Pulse Relativistic Backward Wave Oscillator[J]. IEEE Trans Plasma Sci, 1999: 825--828.
  • 7Korovin S, Mesyats G, Pegel I, et al. Pulsewidth Limi- tation in the Relativistic Backward Wave Oscillator. IEEE Trans Plasma Sci, 1999, 28: 485--495.
  • 8Benford J, Swegle J. High Power Microwaves. Nor- wood[M]. MA: Artech House, 1992.
  • 9Benford J, Benford G. Survey of Pulse Shortening In High-Power Microwave Sources[J]. IEEE Trans Plas- ma Sci, 1997,25: 311.
  • 10Agee F J, Calico S E, Hendricks K J, et al. Pulse Shortening in the Magnetically Insulated Line Oscillator [J]. Intense Microwave Pulses IV, Proceedings S PIE,1996,2843: 144.

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部