期刊文献+

扩散张量成像各向异性参数对乳腺恶性肿瘤的鉴别诊断价值 被引量:12

Anisotropic parameters of diffusion tensor imaging in breast: a preliminary study for detection and differentiation of malignant tumors
原文传递
导出
摘要 目的 探讨DTI参数对乳腺恶性肿瘤的鉴别诊断价值.方法 回顾性分析经手术病理证实的54例乳腺病变患者资料,其中恶性肿瘤33例,良性病变21例,共54个病变.患者行DTI检查,测量乳腺恶性肿瘤组织、对侧正常乳腺组织和良性肿瘤组织的最大本征张量值(E1)、平均扩散率(MD)和各向异性分数(FA).采用配对£检验和独立样本t检验分别比较恶性肿瘤与健侧正常乳腺组织、恶性肿瘤与良性肿瘤组织上述参数的差异;以E1、FA、MD作为预测变量,分别进行Logistic 回归分析,预测最佳回归模型;采用ROC曲线分析E1、FA、MD和回归模型对乳腺恶性肿瘤的鉴别能力.结果 恶性肿瘤组织的E1、MD和FA值分别为(0.99 ±0.12)×10-3mm2/s、(0.85 ±0.26)×10-3mm2/s和0.20 ±0.08,健侧正常乳腺组织分别为(1.46±0.55)×10-3mm2/s、(1.48±0.44)×10-3 mm2/s和0.29±0.17,良性肿瘤组织分别为(1.80±0.42)×10-3 mm2/s、(1.38±0.52)×10-3mm2/s和0.22 ±0.10;恶性肿瘤组织和正常乳腺组织的上述参数差异均有统计学意义(t值分别为-4.889、-6.449和-2.842,P值均<0.01);良恶性肿瘤组织的E1、MD差异有统计学意义(t值分别为-10.476和-4.394,P值均<0.01),而FA值差异无统计学意义(P>0.05).E1、MD和FA值均是鉴别乳腺恶性肿瘤与正常乳腺组织的独立预测因素,回归模型鉴别乳腺恶性肿瘤和正常组织的敏感度、特异度和准确度分别为97.0% (32/33)、97.0%(32/33)和97.0%(64/66),高于其他DTI参数.E1和回归模型鉴别病变良恶性的诊断效能最高,诊断的敏感度、特异度和准确度均为97.0%(32/33)、100.0%(21/21)和98.1%(53/54).结论 将E1、MD和FA结合的回归模型对于乳腺恶性肿瘤的诊断价值最高,而E1是鉴别肿瘤良恶性的首选指标. Objective To investigate the diagnostic value of DTI anisotropy parameters in breast malignant tumors.Methods Fifty four patients,including 33 patients with malignant tumors and 21 patients with benign lesions,were retrospectively analyzed.The E1,MD and FA of lesions were measured and compared by paired t test between the malignant tumors and the contralateral healthy breast tissue.The difference between malignant tumors and benign lesions was analyzed by independent sample t test.Logistic regression analysis was made using E1,FA,MD as predictors in detecting and differentiating the malignant tumors,ROC curve analysis was performed to compare diagnostic performance based on the area under the curve (AUC).Results E1,MD and FA in malignant tumors were (0.99 ± 0.12) × 10-3mm2/s,(0.85 ±0.26) × 10-3mm2/s and 0.20 ±0.08 respectively,and those in normal breast tissues were(1.46 ± 0.55) × 10-3 mm2/s、(1.48 ± 0.44) × 10-3 mm2/s and 0.29 ± 0.17 respectively.Those parameters in benign lesions were (1.80 ±0.42) × 10-3mm2/s,(1.38 ±0.52) × 10-3mm2/s and 0.22 ± 0.10 respectively.Significant statistic differences were found between malignant tumors and normal breast tissues in E1,MD and FA (t =-4.889,-6.449,-2.842 ; P 〈 0.01).Significant statistic differences were also found between malignant tumors and benign lesions in E1 and MD (t =-10.476,-4.394; P 〈 0.01) with no difference found in FA (P 〉 0.05).E1,MD and FA are independent predictors in malignant tumors' detection,and the combination of E1,MD and FA significantly improved discrimination between cancer and normal tissue over each one alone with the sensitivity 97.0% (32/33),specificity 97.0% (32/33),accuracy 97.0% (64/66).Combination of E1 and MD had a similar AUC with E1 and a more AUC than MD and FA,with the sensitivity 97.0% (32/33),specificity 100.0% (21/21),accuracy 98.1% (53/54).Conclusion The regression model combining E1,MD and FA is most valuable in breast cancer detection and E1 is the preferred index for the differentiation of breast cancers from benigin lesions.
出处 《中华放射学杂志》 CAS CSCD 北大核心 2014年第3期180-183,共4页 Chinese Journal of Radiology
关键词 乳腺肿瘤 磁共振成像 对比研究 Breast neoplasms Magnetic resonance imaging Comparative study
  • 相关文献

参考文献7

  • 1张静,安宁豫,程流泉,蔡幼铨,张爱莲,李席如,郭勇.1.5TMR乳腺扩散加权成像b值的优化[J].中华放射学杂志,2011,45(10):937-941. 被引量:19
  • 2戸崎光宏,林青.高b值MR扩散加权成像在乳腺良恶性病变诊断中的应用价值[J].中华放射学杂志,2011,45(12):1098-1103. 被引量:8
  • 3Partridge SC, Murthy RS, Ziadloo A, et al. Diffusion tensor magnetic resonanee imaging of the normal breast[ J]. Magn Reson Imaging, 2010, 28:320-328.
  • 4Taglialico A, Rescinito G, Monetti F, et al. Diffusion tensor magnetic resonance imaging of the normal breast: reproducibility of DTI-derived fractional anisotropy and apparent diffusion coefficient at 3. 0 T [J]. Radiol Med, 2012, 117:992-1003.
  • 5Ginat DT, Mangla R, Yeaney G , et al. Diffusion-weighted imaging for differentiating benign from malignant skull lesions and correlation with cell density[ J]. AJR Am J Rentgenol, 2012, 198 : W597-601.
  • 6Partridge SC, Ziadloo A, Murthy R, et al. diffusion tensor MRI: preliminary anisotropy measures and mapping of breast tumors [J]. J Magn Reson Imaging, 2010,31:339-347.
  • 7刘影,李传福,张凯,侯金文,王茜,丛培新,郑金勇,孟祥水,冯德朝.星形细胞瘤各向异性分数值与其内部微结构的相关性分析[J].中华放射学杂志,2007,41(4):355-357. 被引量:7

二级参考文献36

  • 1赵斌,蔡世峰,高佩虹,彭洪娟.MR扩散加权成像鉴别乳腺良恶性病变的研究[J].中华放射学杂志,2005,39(5):497-500. 被引量:146
  • 2魏大年,陈忠平.弥散张量成像在神经肿瘤外科的临床应用现状[J].中国神经肿瘤杂志,2005,3(3):177-182. 被引量:6
  • 3何光武,项华,何江波,成中意,徐建荪,汪守中,沈天真,陈星荣.大脑胶质瘤DTT初步研究[J].医学影像学杂志,2006,16(1):32-35. 被引量:8
  • 4HaRemi RH, Bradley WG. MRI: the basics. New York: Williams, 1997 : 167-174.
  • 5Bammer R. Basic principles of diffusion-weighted imaging. Eur J Radiol,2003 ,45 :169-184.
  • 6Kuroki Y, Nasu K. Advances in breast MRI: diffusion-weighted imaging of the breast. Breast Cancer,2008,15:212-217.
  • 7DeLano MC, Cooper TG, Siebert JE, et al. High-b-value diffusion-weighted MR imaging of adult brain : image contrast and apparent diffusion coefficient map features. AJNR, 2000, 21: 1830-1836.
  • 8Burdette JH, Durden DD, Elster AD, et al. High b-value diffusion-weighted MRI of normal brain. J Comput Assist Tomogr, 2001,25:515-519.
  • 9Yamada N, Imakita S, Sakuma T. Value of diffusion-weighted imaging and apparent diffusion coefficient in recent cerebral infarction: a correlative study with contrast enhanced T1 weighted imaging. AJNR, 1999,20 : 193-198.
  • 10Cihangiroglu M, Ulug AM, Firat Z, et al. High b-value diffusion- weighted MR imaging of normal brain at 3 T. Eur J Radiol,2009, 69:454-458.

共引文献30

同被引文献70

  • 1胡军武,肖旭轩,李勇刚,史瑞华,夏黎明,王承缘.扩散张量成像技术及各指标的初步应用与评价[J].中华放射学杂志,2004,38(12):1256-1259. 被引量:24
  • 2王洪波,陈焱君,吴泽文,肖林.MR扩散张量成像在软组织肿瘤诊断中的应用[J].中国临床医学影像杂志,2010,21(11):827-829. 被引量:3
  • 3王海燕,赵斌,于富华.DTI常用扫描序列原理及比较[J].医学影像学杂志,2006,16(4):402-404. 被引量:11
  • 4Partridge SC. Ziadloo A, Murthy R,et al.Diffusion tensor MRI:preliminary anisotropy measures and mapping of breast tumors [J]. J Magn Reson Imaging,2010,31 (2) :339-347. DOI: 10. 1002/jmri. 22045.
  • 5Baltzer PA, Schafer A, Dietzel M, et al. Diffusion tentor magnetic resonance imaging of the breast : a pilot study [ J ]. Eur Radio1,2011,21 ( 1 ) : 1-10. DOI : 10. 1007/s00330-010-1901-9.
  • 6Partridge SC, Demartini WB, Kurland BF, et al. Differential diagnosis of mammographically and clinically occult breast lesions on diffusion-weighted MRI[ J]. J Magn Reson Imaging, 2010,31 (3) :562-570. DOI: 10. 1002/jmri. 22078.
  • 7Pereira FP, Martins G, Figueiredo E, et al. Assessment of breast lesions with diffusion-weighted MRI: comparing the use of different b values [ J ]. AJR Am J Roentgenol, 2009, 193 ( 4 ) : 1030-1035. DOI : 10. 2214/A JR. 09. 2522.
  • 8Pinker K, Bickel H, Helbich TH, et al. Combined contrast- enhanced magnetic resonance and diffusion-weighted imaging reading adapted to the " Breast Imaging Reporting and Data System" for multiparametric 3-T imaging of breast lesions[ J]. Eur Radiol,2013, 23 (7) : 1791-1802. DOI: 10. 1007/s00330-013- 2771-8.
  • 9Nissan N, Furman-Haran E, Shapiro-Feinberg M, et al. Diffusion- tentor MR imaging of breast : hormonal regulation [ J 1. Radiology, 2014, 271 ( 3 ) : 672-680. DOI : 10.1148/radiol. 14132084.
  • 10Eyal E, Shapiro-Feinberg M, Furman-Haran E, et al. Parametric diffusion tentor imaging of the breast [ J ]. Invest Radiol, 2012,47 (5) :284-291. DOI : 10. 1097/RLI.0b013 e3182438e5d.

引证文献12

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部