期刊文献+

LysM结构域及其与植物-真菌相互作用的关系 被引量:7

LysM Domains and Its Roles in Plant-Fungus Interactions
原文传递
导出
摘要 在长期的进化过程中,植物与真菌之间形成了复杂而又紧密的联系,其中最主要的就是侵染与防御的关系。植物的抗病性由于涉及农作物、林木的生长与产量,逐渐成为研究热点。在植物免疫系统中,对病原真菌的识别是一个重要环节。目前认为在这一过程中,LysM结构域起到了极为关键的作用。植物细胞膜上有含LysM结构域的识别受体,该受体可以结合真菌细胞壁上的几丁质,并将信号传递到胞内,从而启动免疫反应。在真菌中,同样具有含LysM结构域的基因,主要是一类效应因子。它们可能参与真菌在侵染过程中的"伪装",以逃避植物的识别。该文以LysM结构域在植物-真菌相互作用中扮演的角色为着眼点,讨论有关研究的意义与趋势,并对如何利用LysM结构域的相关研究进行有效的抗病育种提出了新的设想。 Abstract During evolution, complicated interactions were formed between plants and fungi. The most common form is infection and defence. Recently, studies have focused on this area because of its effect on yield and quality of crops and forest trees. Perception of a pathogenic fungus at the cell surface is an important step in plant immunity. A conserved domain called LysM plays a central role in this process. Plants recognize pathogenic fungi by LysM-contained cell-surface receptors. These receptors can bind with chitin, the main component of the fungal cell wall, and deliver signals into the cell to initiate the immune response. However, some pathogenic fungi evolve LysM effectors to avoid being recognized by the host. Here, we summarize current research into the LysM domain in plants and fungi, emphasize the significance and future directions, and discuss how to develop high efficiency breeding for disease resistance. Key words LysM, domain, fungi, molecular interactions
出处 《植物学报》 CAS CSCD 北大核心 2014年第2期221-228,共8页 Chinese Bulletin of Botany
基金 国家重点基础研究发展计划(No.2009CB119100) 江苏高校优势学科项目(RAPD)
关键词 LysM 结构域 真菌 相互作用 LysM domain fungi molecular interactions
  • 相关文献

参考文献39

  • 1李海燕,刘润进,束怀瑞.丛枝菌根真菌提高植物抗病性的作用机制[J].菌物系统,2001,20(3):435-439. 被引量:44
  • 2王忠华,贾育林,夏英武.植物抗病分子机制研究进展[J].植物学通报,2004,21(5):521-530. 被引量:30
  • 3Arrighi JF, Barre A, Amor BB, Bersoult A, Soriano LC, Mirabella R, de Carvalho-Niebel F, Journet EP, Gherardi M, Huguet T, Geurts R, Denarie J, Rouge P, Gough C (2006). The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol 142, 265- 279.
  • 4Bateman A, Bycroft M (2000). The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosylase D (MitD). J Mol Biol 299, 1113-1119.
  • 5Bensmihen S, de Billy F, Gough C (2011). Contribution of NFP LysM domains to the recognition of nod factors during the medicago truncatulalSinorhizobium meliloti symbiosis. PLoS One 6, e26114.
  • 6Bielnicki J, Devedjiev Y, Derewenda U, Dauter Z, Joachimiak A, Derewenda ZS (2006). B. subtilis ykuD protein at 2.0 A resolution: insights into the structure and function of a novel, ubiquitous family of bacterial enzymes. Protein Struct Funct Biolnforma 62, 144-151.
  • 7Bolton MD, Van Esse HP, Vossen JH, De Jonge R, Stergiopoulos I, Stulemeijer IJE, Van Den Berg G, Borras-Hidalgo 0, Dekker HL, De Koster CG, De Wit PJGM, Joosten MHAJ, Thomma BPHJ (2008). The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species. Mol Microbiol 69, 119-136.
  • 8Buist G, Steen A, Kok J, KUipers OP (2008). LysM, a widely distributed protein motif for binding to (peptido) glycans. Mol Microbiol 68, 838-847.
  • 9Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006). Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124, 803-814.
  • 10de Jonge R, Thomma BPHJ (2009). Fungal LysM effectors: extinguishers of host immunity? Trend Microbiol 17, 151- 157.

二级参考文献45

  • 1Penninckx I A M A, Eggermont K, Terras F R G, Thomma B P H J, De Samblanx G W, Buchala A, Metraux J P,Manners J M, Broekaert W F, 1996. Pathogen-induced systemic activation of a plant defensive gene in Arabidopsis follows a salicylic acid-independent path
  • 2Ryals J A, Neuenschwander U H, Willits M G, Molina A, Steiner H Y, Hunt M D, 1996. Systemic acquired resistance.Plant Cell, 8:1809-1819
  • 3Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C,Ronald P, 1995. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa-21. Science, 270:1804~1806
  • 4Staskawicz B J, Dahlbeck D, Keen N T, 1984. Cloned avirulence gene of Pseudomonas syringae pv. Glycinea determines race-specific incompatibility on Glycine max.(L.). Proc Natl Acad Sci USA, 81:6024-6028
  • 5Staskawicz B J, Ausubel F M, Baker B J, Ellis J G, Jones J D G, 1995. Molecular genetics of plant disease resistance.Science, 268:661-667
  • 6Staskawicz B J, Mudgett M B, Dangl J L, Galan J E, 2001. Common and contrasting themes of plant and animal diseases. Science, 292:2285-2289
  • 7Sweigard J A, Chumley F G, Valent B, 1992. Cloning and analysis of CUTl, a cutinase gene from Magnaporthe grisea.Mol Gen Genet, 232:174-182
  • 8Sweigard J A, Carroll A M, Kang S, Farrall L, Chumley F G, Valent B, 1995. Identification, cloning and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell, 7:1221~1233
  • 9Talbot N J, Kershaw M J, Wakley G E, de Vries O M H, Wessels J G H, Hamer J E, 1996. MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea.Plant Cell, 8:985~999
  • 10van den Ackerveken G F J M, van Kan J A L, de Wit P J G M, 1992. Molecular analysis of the avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum fully supports the gene-for-gene hypothesis. Plant J, 2:359~366

共引文献72

同被引文献145

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部