期刊文献+

A NOVEL APPLICATION OF A CLASSICAL METHOD FOR CALCULATING THE BASIC REPRODUCTIVE NUMBER, Ro FOR A GENDER AND RISK STRUCTURED TRANSMISSION DYNAMIC MODEL OF HUMAN PAPILLOMAVIRUS INFECTION

A NOVEL APPLICATION OF A CLASSICAL METHOD FOR CALCULATING THE BASIC REPRODUCTIVE NUMBER, Ro FOR A GENDER AND RISK STRUCTURED TRANSMISSION DYNAMIC MODEL OF HUMAN PAPILLOMAVIRUS INFECTION
原文传递
导出
摘要 Mathematical models are increasingly being used in the evaluation of control strategies for infectious disease such as the vaccination program for the Human PapiUomavirus (HPV). Here, an ordinary differential equation (ODE) transmission dynamic model for HPV is presented and analyzed. Parameter values for a gender and risk structured model are estimated by calibrating the model around the known prevalence of infection. The effect on gender and risk sub-group prevalence induced by varying the epidemiological parameters are investigated. Finally, the outcomes of this model are applied using a classical mathematical method for calculating R0 in a heterogeneous mixing population. Estimates for R0 under various gender and mixing scenarios are presented.
出处 《International Journal of Biomathematics》 2013年第6期149-161,共13页 生物数学学报(英文版)
关键词 Transmission dynamic models HPV ODE SIR model R0 结构化模型 动态模型 病毒感染 性别 应用 风险 计算 传输
  • 相关文献

参考文献26

  • 1M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, Oxford, 1991).
  • 2R. V. Barnabas, P. Laukkanen, P. Koskela, O. Kontula, M. Lehtinen and G. P. Garnett, Epidemiology of HPV 16 and cervical cancer in Finland and the potential impact of vaccination: Mathematical modelling analyses, PLoS Medicine 3 (2007) 624.
  • 3Centers for Disease Control and Prevention (CDC), Sexually transmitted diseases (STDs). Genital HPV infection -- Fact sheet (2011) [Online article]: cited on 31 January (2012), http://www.cdc.gov/std/HPV/STDFact-HPV.htm.
  • 4O. Diekmann, J. A. Heesterbeek and J. A. Metz, On the definition and the compu- tation of the basic reproduction ratio R0 in models for infectious diseases in hetero- geneous populations, J. Math. Biol. 28 (1990) 365-382.
  • 5E. H. Elbasha and A. P. Galvani, Vaccination against multiple HPV types, Math. Biosci. 197 (2005) 88-117.
  • 6G. P. Garnett and R. M. Anderson, Contact tracing and the estimation of sexual mixing patterns: The epidemiology of gonococcal infections, Sex. Transmit. Diseases 20 (1993) 181-191.
  • 7G. Y. Garnett and R. M. Anderson, Sexually transmitted diseases and sexual behav- ior: Insights from mathematical models, J. Infect. Diseases 174 (1996)S150-S161.
  • 8S. J. Goldie, D. Grima, M. Kohli, T. C. Wright, M. Weinstein and E. Franco, A comprehensive natural history model of human papillomavirus (HPV) infection and cervical cancer: Potential impact of and HPV 16/18 vaccine, Int. J. Cancer 106 (2003) 896-904.
  • 9S. J. Goldie, M. Kohli, D. Grima, M. C. Weinstein, T. C. Wright, F. X. Bosch and E. Franco, Projected clinical benefits and cost-effectiveness of a human papillomavirus 16/18 vaccine, J. Natl. Cancer Inst. 96 (2004) 604-615.
  • 10H. W. Hethcote and J. A. Yorke, Gonorrhea Transmission Dynamics and Control, Lecture Notes in Biomathematics, Vol. 56 (Springer-Verlag, Berlin, 1984).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部