摘要
为了实现模糊噪声图像的清晰化复原,提出了一种基于布雷格曼迭代的稀疏正则化约束的图像复原算法。首先,运用差分算子,得到图像中各个方向上的梯度信息;然后,利用提取的梯度信息,得到图像边缘各个方向上的权重;并结合稀疏性原理,针对复原图像,提出了一种权重的稀疏性正则化约束;最后,运用了一种布雷格曼迭代(Bregman Iteration,BI)策略对提出的方法进行最优化求解。实验结果表明,较近几年的一些具有代表性的图像复原方法相比,不仅主观的视觉效果得到了较为明显的改进,而且客观的信噪比增量也增加了0.3~2.5dB。
In order to recover the blurred-noisy image, a Bregman-iteration based weighted sparsity regulariza- tion method for image restoration is proposed. First, using the difference operator, the gradient information of dif- ferent directions in the image can be obtained. Second, making use of the gradient information, the weights for im- age edges in different directions can be obtained. Then, combining the sparsity theory, a weighted sparsity regulari- zation constraint is proposed. Finally, a Bregman iteration (BI) approach is employed to restore the image. Experi- mental results indicate that the proposed method outperforms some representative image restoration methods, not on- ly the subjective vision has the betterment obviously proves 2.2 dB. , but also the increase of the signal to noise ratio (ISNR) im-
出处
《科学技术与工程》
北大核心
2014年第9期189-193,共5页
Science Technology and Engineering
关键词
图像复原
梯度信息
稀疏性原理
权重的稀疏性正则化约束
布雷格曼迭代
image restoration gradient information sparsity theory weighted sparsity regularizationconstraint Bregman iteration