期刊文献+

基于布雷格曼迭代的稀疏正则化图像复原方法 被引量:2

A Bregman Iteration Sparsity Regularization Method for Image Restoration
下载PDF
导出
摘要 为了实现模糊噪声图像的清晰化复原,提出了一种基于布雷格曼迭代的稀疏正则化约束的图像复原算法。首先,运用差分算子,得到图像中各个方向上的梯度信息;然后,利用提取的梯度信息,得到图像边缘各个方向上的权重;并结合稀疏性原理,针对复原图像,提出了一种权重的稀疏性正则化约束;最后,运用了一种布雷格曼迭代(Bregman Iteration,BI)策略对提出的方法进行最优化求解。实验结果表明,较近几年的一些具有代表性的图像复原方法相比,不仅主观的视觉效果得到了较为明显的改进,而且客观的信噪比增量也增加了0.3~2.5dB。 In order to recover the blurred-noisy image, a Bregman-iteration based weighted sparsity regulariza- tion method for image restoration is proposed. First, using the difference operator, the gradient information of dif- ferent directions in the image can be obtained. Second, making use of the gradient information, the weights for im- age edges in different directions can be obtained. Then, combining the sparsity theory, a weighted sparsity regulari- zation constraint is proposed. Finally, a Bregman iteration (BI) approach is employed to restore the image. Experi- mental results indicate that the proposed method outperforms some representative image restoration methods, not on- ly the subjective vision has the betterment obviously proves 2.2 dB. , but also the increase of the signal to noise ratio (ISNR) im-
作者 陈曦
出处 《科学技术与工程》 北大核心 2014年第9期189-193,共5页 Science Technology and Engineering
关键词 图像复原 梯度信息 稀疏性原理 权重的稀疏性正则化约束 布雷格曼迭代 image restoration gradient information sparsity theory weighted sparsity regularizationconstraint Bregman iteration
  • 相关文献

参考文献15

  • 1Gonzalez R C, Woods R E. Digital Image Processing-second Edition. Electronic Industry Press, 2002.
  • 2乔建苹,刘琚.基于支撑向量机的盲超分辨率图像复原算法[J].电子学报,2007,35(10):1927-1933. 被引量:10
  • 3Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D, 1992; 60:259-268.
  • 4Chan T F, Wong C. Total variation blind deconvolution. IEEE Trans- actions on Image Processing, 1998; 7 (3) : 370-375.
  • 5Money J H, Kang S H. Total variation minimizing blind deconvolu- tion with shock filter reference. ELSEVIER Image and Vision Compu- ting, 2008; 26:302-314.
  • 6Beck A, Teboulle M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans- actions on Image Processing, 2009; 18 (11 ) : 2419-2434.
  • 7Chantas G, Galatsanos N P, Member S, et al. IEEE variational bayesian image restoration with a product of spatially weighted total variation image priors. IEEE Transactions on Image Processing, 2010 19(2) : 351-362.
  • 8Chen D Q, Cheng L Z. Alternative minimisation algorithm for non-lo- cal total variational image deblurring. IET Image Processing, 2010; 4 (5) : 353-364.
  • 9Zhang X Q, Burger M, Bresson X, et al. Bregmanized nonlocal regu- larization for deconvolution and sparse reconstruction. SIAM Journal on Imaging Sciences, 2010; 3 (3) : 253-276.
  • 10Afonso M V, Bioucas-Dias J M, Figueiredo M A T. Fast image re- covery using variable splitting and constrained optimization. IEEE Transactions on Image Processing, 2010; 19(9) : 2345-2356.

二级参考文献14

  • 1Nguyen N, Milanfar P, Golub G. Efficient generalized crossvalidation with applications to parametric image restoration and resolution enhancement [J]. IEEE Transactions on Image Processing,2001,10(9): 1299 - 1308.
  • 2Begin I, Ferrie F R. Blind super-resolution using a learning-based approach [A]. Proceedings of International Conference on Pattern Recognition[C]. Cambridge, U. K. ,2004. II-85-89.
  • 3Nakagaki R, Katsaggelos A K. A VQ-based blind image restoration algorithm [J]. IEEE Transactions on Image Processing,2003,12(9) : 1044 - 1053.
  • 4Zhaozhong Wang,Feihu Qi. On ambiguities in super-resolution modeling[J]. IEEE signal processing letters, 2004, 11 (8): 678-681.
  • 5Gevrekci M, Gunturk B K. Image acquisition modeling for super-resolution reconstruction[A]. Proceedings of International Conference on Image Processing [C]. Genoa, Italy, 2005. II- 1058-1061.
  • 6Hsu C W, Lin C J. A comparison of methods for multi-class support vector machines[J]. IEEE Transactions on Neural Networks, 2002,13(2) :415 - 425.
  • 7Woods N A, Galatsanos N P, Katsaggelos A K. Stochastic methods for joint registration, restoration, and interpolation of multiple undersampled images[J]. IEEE Transactions on Image Processing,2006,15(1) :201 - 213.
  • 8Robinson D, Milanfar P. Fast local and global projection-based methods for affme Motion estimation[J]. Journal of Mathematical Imaging and Vision,2003,18(1):35- 54.
  • 9Altunbasak, Y, Mersereau, R M, Patti, A J, A fast parametric motion estimation algorithm with illumination and lens distortion correction [J]. IEEE Transactions on Image Processing, 2003, 12(4) :395 - 408.
  • 10Getian Ye, Picketing M, Frater M, Arnold J. Efficient multiimage registration with illumination and lens distortion correction[A]. Proceedings of International Conference on Image Processing[C]. Genoa, Italy, 2005. Ⅲ-1108-1111.

共引文献9

同被引文献18

  • 1杨钢,王玉涛,邵富群,王师.用于ECT图像重建的预处理Landweber迭代算法[J].东北大学学报(自然科学版),2006,27(9):953-956. 被引量:4
  • 2YU Gao-hang, XUE Wei, ZHOU Yi. A Nommonotone Adaptive Projected Gradient Method for Primal-dual Total Variation Image Restoration[J]. Signal Procvessing, 2014, 103 ( 8 ) : 242-249.
  • 3WANG Li-qian, XIAO Liang, ZHANG Jun. New Image Res- toration Method Associated with Tarliels, Shrinkage and Weighle(I Anisolrpic Tolal Varialic)[J]. Signal Progressing, 2013.93(4 ) :661-670.
  • 4ZHOU Hai-jun, WANG Chuang. Region Graph Partition Function Expansion and Approximate Free Energy Land- scapes: Theory and Some Numerical Results[J]. Journal of Statistical Physics, 2012,148 (3) : 513-547.
  • 5GOUSSEAU Y, MOREL J M. Are Natural Images of Bnunded Variation[J]. SIAM Journal on Mathematical Analysis, 2011, 33(17) :634-648.
  • 6CARASSO A S. Singular Integrals, Image Smoothness, and the Recovery of Texture in Image Deblurring[J]. SIAM Journal on Applied Mathematics, 2004,65 (4) : 1749-1774.
  • 7JIANG Ding-feng, HUANG Jian. Memorization Minimization by Coordinate Descent for Concave Penalized Generalized Linear Models[J]. Statistics and Computing, 2014, 24 (5) : 871-883.
  • 8IOANNIS E L, PANAGIOTIS P. A New Class of Spectral Con-jugate Gradient Methods Based on a Modified Secant Equa- tion for Unconstrained Optimization[J]. Journal of Computa- tional and Applied Mathematics, 2013,239(12) : 396-405.
  • 9LUCA A, GISELLA F. The Total Variation of Bounded Varia- tion Functions to Evaluate and Rank Fuzzy Quantities[J]. In- ternational Journal of Intelligent Systems, 2013, 28 (10) : 927-956.
  • 10SIMCOX T, FIEZ J A. Collecting Response Times Using Ama- zon Mechanical Turk and Adobe Flash[J]. Behavior Research Methods, 2014,48 ( 1 ) : 95- 111.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部