期刊文献+

一种扭曲粘连字符验证码识别方法 被引量:19

A Recognition Method for Distorted and Merged Text-Based CAPTCHA
下载PDF
导出
摘要 验证码识别研究能及时发现验证码的安全漏洞,使其变得更加安全.扭曲粘连字符验证码能抵抗字符分割,是验证码识别中的难点.针对由扭曲粘连字符构成的验证码,提出一种基于密集尺度不变特征变换(DENSE SIFT)和随机抽样一致性算法(RANSAC)的识别方法.首先通过DENSE SIFT特征匹配获得匹配点集,再利用RANSAC算法获取匹配信息,最后采用队列式分析算法得出识别结果.实验表明,该方法对不同难度级别的扭曲粘连验证码均有较好的效果. The study of CAPTCHA recognition can discover CAPTCHA security vulnerabilities in time to make it more secure. Distorted and merged CAPTCHA can resist character segmentation, which is the difficult in CAPTCHA recognition. An approach based on DENSE SIFT and RANSAC algorithm is presented for recognition of distorted and merged CAPTCHA. Firstly, matching set is obtained through the matching of DENSE SIFT. Then, matching information is got by using RANSAC algorithm. Finally, recognition results are acquired by means of queue-analysis algorithm. The experimental results show that the proposed method has good performance on CAPTCHAs in different levels of difficulty.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第3期235-241,共7页 Pattern Recognition and Artificial Intelligence
关键词 验证码识别 扭曲粘连字符 密集尺度不变特征变换(DENSE SIFT) 随机抽样一致性算法(RANSAC) CAPTCHA Recognition, Distorted and Merged Character, Dense Scale Invariant FeatureTransform (DENSE SIFT), Random Sample Consensus (RANSAC)
  • 相关文献

参考文献12

  • 1Chellapilla K, Simard P Y. Using Machine Learning to Break Visual Human Interaction Proofs / / Proc of the Advances in Neural Information Processing Systems. Cambridge, USA, 2005: 265-272.
  • 2Chandavale A A, Sapkal A M, Jalnekar R M. Algorithm to Break Visual CAPTCHA / / Proc of the 2nd International Conference on Emerging Trends in Engineering and Technology. Nagpur, India, 2009: 258-262.
  • 3Zhang J S, Wang X F. Breaking Internet Banking CAPTCHA Based on Instance Learning / / Proc of the 3 rd International Symposium on Computational Intelligence and Design. Hangzhou, China, 2010: 39- 43.
  • 4殷光,陶亮.一种SVM验证码识别算法[J].计算机工程与应用,2011,47(18):188-190. 被引量:18
  • 5王璐.验证码识别技术研究.硕士学位论文.合肥:中国科学技术大学,2010.
  • 6Gao H C, Wang W, Fan Y. Divide and Conquer: An Efficient Attack on Yahoo! CAPTCHA//Proc of the 11th IEEE International Confer- ence on Trust, Security and Privacy in Computing and Communications. Liverpool, UK, 2012:9-16.
  • 7Bursztein E, Martin M, Mitchell J C. Text-Based CAPfCHA Strengths and Weaknesses / / Proc of the ACM Conference on Computer and Communications Security. Chicago, USA, 2011: 125-138.
  • 8张亮,黄曙光,石昭祥,胡荣贵.基于LSTM型RNN的CAPTCHA识别方法[J].模式识别与人工智能,2011,24(1):40-47. 被引量:25
  • 9Lowe D G. Distinctive Image Features form Scale Invariant Keypoints. International Journal of Computer Vision, 2004, 60 ( 2 ) : 91-110.
  • 10Liu C, Yuen J, Torralba A. SIFT Flow: Dense Correspondence across Scenes and Its Applications. IEEE Trans on Pattern Analysis and Machining Intelligence, 2011 , 33 (5) : 978 -994.

二级参考文献27

  • 1Gers F A, Sehmidhuber J. LSTM Recurrent Networks Learn Simple Context-Free and Context-Sensitive Languages. IEEE Trans on Neu-ral Networks, 2001, 12(6): 1333-1340.
  • 2Mitchell T M. Machine Learning. New York, USA: McGraw Hill, 1997.
  • 3Yang Jian, Zhang D, Alejandro F, et al. Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition. IEEE Trans on Pattern Analysis and Machine Intelli-gence, 2004, 26(1): 117-129.
  • 4Wachenfeld S, Klein H V, Jiang Xiaoyi. Recognition of Screen-Rendered Text//Proc of the 18th International Conference on Pat-tern Recognition. Hongkong, China, 2006, Ⅱ : 1086-1089.
  • 5von Ahn L, Blum M, Hopper N J, et al. CAPTCHA: Using Hard AI Problems for Security// Proc of the 22nd International Confer-ence on Theory and Applications of Cryptographic Techniques. War-saw, Poland, 2003 : 294-311.
  • 6Rusu A, Thomas A, Govindaraju V. Generation and Use of Hand- written CAPTCHAs. International Journal on Document Analysis and Recognition, 2010,13(1) :49-64.
  • 7Rusu A, Govindaraju V. Handwritten CAPTCHA: Using the Differ-ence in the Abilities of Humans and Machines in Reading Handwrit-ten Words//Proc of the 9th International Workshop on Frontiers in Handwriting Recognition. Tokyo, Japan, 2004 : 226-231.
  • 8von Ahn L, Maurer B, McMillen C, et al. reCAPTCHA: Human-Based Character Recognition via Web Security Measures. Science, 2008, 321 (5895) : 1465-1468.
  • 9Chellapilla K, Simard P. Using Machine Learning to Break Visual Human Interaction Proofs (HIPs) // Weiss Y, Scholkopf B, Platt J, eds. Advances in Neural Information Processing Systems. Cam- bridge, USA: M IT Press, 2004, 17: 265-272.
  • 10Hocevar S. PWNTCHA-Pretend Were Not a Turing Computer But a Human Antagonist [EB/OL]. [2010-02-15]. http ://sam. zoy. org/wiki/PWNtcha.

共引文献38

同被引文献93

  • 1陈兵,吴微.基于SOFM和最短路径法的黏连字符分割[J].仪器仪表学报,2006,27(z3). 被引量:2
  • 2韩国强,田绪红,李志垣,司徒志远.三维图像骨架化方法综述[J].小型微型计算机系统,2007,28(9):1695-1699. 被引量:8
  • 3王虎,冯林,孙宇哲.数字验证码识别算法的研究和设计[J].计算机工程与应用,2007,43(32):86-88. 被引量:18
  • 4Louloudis G, Gatos B, Pratikakis I, et al. Text line detection in handwritten documents[J]. Pattern Recognition,2008,41 (12):3758-3772.
  • 5Kumar J, Almageed W A, Doermann D. Handwritten Arabic text line segmentation using affinity propagation[C]//Proc. of the 9th IAPR International Workshop on Document Anal- ysis Systems[M]. New York,USA:[s.n.],2010.
  • 6Manmatha R, Rothfeder J L. A scale space approach for au- tomatically segmenting words from historical handwritten documents[J]. IEEE Transactions on Pattern Analysis and Machine Intelligent, 2005, 27 (8): 1212-1225.
  • 7N Otsu. A threshold selection method from gray-level histo- grams[J].IEEE Transaction on System, 1979,9( 1 ): 62-69.
  • 8Chellapilla K,Simard P Y.Using machine learning to break visual human interaction proofs[C]//Advances in Neural Information Processing Systems.Cambridge:MIT Press,2005:265-272.
  • 9Huang S Y,Lee Y K,Bell G,et al.An efficient segmentation algorithm for CAPTCHAs with line cluttering and character warping[J].Multimedia Tools and Applications,2010,48(2):267-289.
  • 10Franc V,Hlavac V.License plate character segmentation using hidden Markov chains[C]//Lecture Notes in Computer Science,vol 3663.Berlin:Springer-Verlag,2005:385-392.

引证文献19

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部