期刊文献+

非重叠低维度梯度方向直方图 被引量:2

Low-Dimensional Histogram of Oriented Gradients with Non-Overlapping Scheme
下载PDF
导出
摘要 作为衍生于尺度不变特征变换的特征描述,梯度方向直方图(HOG)在人体检测、手势识别、人脸识别、场景分类等方面得到广泛应用.但HOG的特征维数高,导致维数灾难和大计算量.文中发现HOG特征的高维度源自它需在众多重叠块中计算直方图.虽然重叠块机制对特征的鲁棒性有积极作用,但也导致信息冗余.为去除冗余信息并降低特征维数,从直方图归一化入手,提出非重叠式梯度方向直方图.所提方法的维数降低为传统方法的1/3.在人手和人体检测上的实验表明,该方法不仅物体检测速度得到显著提高,检测准确度也得到改善. As a derivation version of scale-invariant feature transform (SIFT), histogram of oriented gradients (HOG) is widely used in human detection, gesture recognition, face recognition, scene classification, etc. However, the high dimension of the HOG feature vector leads to the curse of the dimensionality and high computation complexity. In this paper, it is found that the high dimension of HOG feature vector results from computing histograms of overlapping blocks. Though overlapping block is useful for enhancing the robustness, it leads to redundant information. To reduce the redundant information and the number of features as well, a non-overlapping version of HOG is proposed. The dimensions of the proposed method are 1/3 of those of traditional ones. The experimental results on palm and human detection demonstrate the efficiency and effectiveness of the proposed method.
作者 霍亚松 张锟
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第3期242-247,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.61271412)
关键词 梯度方向直方图 特征描述 特征提取 维数约简 Histogram of Oriented Gradients (HOT), Feature Description, Feature Extraction,Dimensionality Reduction
  • 相关文献

参考文献19

  • 1Pang Y W, Yan H, Yuan Y, et al. Robust CoHOG Feature Extraction in Human-Centered Image/Video Management System. IEEE Trans on Systems, Man, and Cybernetics, 2012, 42(2): 458-468.
  • 2Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 2004, 60(2) : 91- 110.
  • 3Tuzel O, Porikli F, Meer P. Pedestrian Detection via Classification on Riemannian Manifolds. IEEE Trans on Pattern Analysis and Machine Intelligence, 2008, 30 ( 10): 1713 -1727.
  • 4Pang Y W, Yuan Y, Li X L. Gabor-Based Region Covariance Matrices for Face Recognition. IEEE Trans on Circuits and System for Video Technology, 2008,18(7): 989-993.
  • 5Ahonen T, Hadid A, Pietikinen M. Face Description with Local Binary Patterns: Application to Face Recognition. IEEE Trans on Pattern Analysis and Machine Intelligence, 2006, 28 ( 12) : 2037-2041.
  • 6Calonder M, Lepetit V, Ozuysal M, et al. BRIEF: Computing a Local Binary Descriptor Very Fast. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012, 34(7) : 1281-1298.
  • 7Guo Z H, Zhang L, Zhang D. A Completed Modeling of Local Binary Pattern Operator for Texture Classification. IEEE Trans on Image Processing, 2010, 19(6): 1657-1663.
  • 8Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection / / Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, 1: 886-893.
  • 9Pang Y W, Yuan Y, Li X L, et al. Efficient HOG Human Detection. Signal Processing, 2011 , 91 ( 4 ) : 773 - 781.
  • 10Linde 0, Lindeberg T. Composed Complex -Cue Histograms: An Investigation of the Information Content in Receptive Field Based Image Descriptors for Object Recognition. Computer Vision and Image Understanding, 2012,116(4): 538-560.

二级参考文献35

  • 1Loncaric S.A Survey of Shape Analysis Techniques.Pattern Recognition,1998,31(8):983-1001.
  • 2Ang Y H,Li Zhao,Ong S H.Image Retrieval Based on Multidimensional Feature Properties.Proc of SPIE,1995,2420:47-57.
  • 3Goshtasby A.Description and Discrimination of Planar Shapes Using Shape Matrices.IEEE Trans on Pattern Analysis and Machine Intelligence,1985,7(6):738-743.
  • 4Taza A,Suen C.Discrimination of Planar Shapes Using Shape Matrices.IEEE Trans on Systems,Man and Cybernetics,1989,19(5):1281-1289.
  • 5Chang C C,Hwang S M,Buehrer D J.A Shape Recognition Scheme Based on Relative Distances of Feature Points from the Centroid.Pattern Recognition,1991,24(11):1053-1063.
  • 6Freeman H,Saghri J.Comparative Analysis of Line-Drawing Modeling Schemes.Computer Graphics and Image Processing,1980,12(3):203-223.
  • 7Lu Guojun.Chain Code-Based Shape Representation and Similarity Measure//Leung C H C,ed.Visual Information Systems.Berlin,Germany:Springer,1997,1306:135-150.
  • 8Iivarinen J,Visa A.Shape Recognition of Irregular Objects.Proc of SPIE,1996,2904:25-32.
  • 9Pinkowski B.Multiscale Fourier Descriptors for Classifying Semivowels in Spectrograms.Pattern Recognition,1993,26(10):1593-1602.
  • 10Young I T,Walker J E,Bowie J E.An Analysis Technique for Biological Shape I.Information and Control,1974,25(4):357370.

共引文献12

同被引文献30

  • 1LOWE D. Object recognition from local scale-invariant features [C]// Proceedings of the 7th the IEEE International Conference on Computer Vision. Kerkyra: IEEE, 1999: 1150-1157.
  • 2LOWED. Distinctive image features from scale-invariant key points [J]. International Journal of Computer, 2004, 11 (60): 91-110.
  • 3BAY H, TUYTELAARS T, ESS A. Speeded up robust features (SURF) [J]. Computer Vision and Image Understanding, 2008, 110(3): 346-359.
  • 4DALAL N, TRIGGS B. Histograms of oriented gradients for hu- man detection [C]// Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005 : 886-893.
  • 5ZHU QIANG, AVIDAN S, MEI Y, et al. Fast human detec- tion using a cascade of histograms of oriented gradients [C]// Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. [S.I.]: IEEE, 2006: 1491-1498.
  • 6BOSH A, ZISSERMAN A, MUNOZ X. Representing shape with a spatial pyramid Kemel [C]// Proceedings of the 6th ACM Intemational Conference on Image and Video Retrieval. New York, USA: ACM Press, 2007: 1091-1096.
  • 7FELZENSZWALB P. A discriminatively trained, muhiscale, deformable part model [C]// Proceedings of the 26th IEEE Con- ference on Computer Vision and Pattern Recognition. Anchorage, AK: IEEE, 2008: 1-8.
  • 8FELZENSZWALB P. Object detection with discriminatively trained part based models [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9) : 1627-1645.
  • 9吴博.HOG特征grgt-图像匹配技术研究[D].武汉:华中科技大学,2011.
  • 10汤彪,左峥嵘,李明.基于旋转不变HOG特征的图像匹配算法[EB/OL].[2013-01-24].http://www.paper.edu.cn/releasepaper/content/201301-1025.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部