期刊文献+

基于偏好信息的动态引导式多目标寻优策略研究

A Dynamic Guided Multi-objective Optimization Strategy Based on Preference Information
下载PDF
导出
摘要 传统的多目标进化算法研究的重点是获得分布在整个Pareto边界上的最优解集,而在现实问题中,决策者只对边界上某些区域分布的解感兴趣.纳入决策者偏好信息的多目标进化算法的研究很有实际意义.因此节约计算资源、快速有效地找到偏好区域的Pareto解集成为其研究的重点.针对该问题,本文提出基于偏好信息的动态引导式多目标寻优策略.该策略通过设置参数ε反映搜索过程中引导区域的动态性,参数控制DM偏好范围.将解与引导区域的距离作为响应选择策略的一个因素,从而有效地获得期望区域内的折衷解.实验结果表明,该算法具有较好的收敛性. The focus of the traditional multi-objective evolutionary algorithms is to obtain the optimal solution set distributed in the entire Pareto frontier. However, in reality problems, the decision makers are merely interested in certain regions of the Pareto frontier. Therefore, it is significant to take the preference information of decision-makers into multi-objective evolutionary algorithms. Thus, how to reduce computing resource and obtain Pareto optimal set effectively in preference regions becomes a hot topic in the research. Aiming at the problem, a dynamic heuristic multi-objective optimization strategy is proposed based on the preference information. The parameter ε is adjusted to reflect the dynamics of the guided regions, and another parameter υ is set to control the size of preference range of DM. The strategy employs the distance between solution set and the guided regions as a factor for selection strategy. The experimental results show the proposed algorithm with this strategy has a good performance especially on the convergence.
作者 郑金华 贾月
出处 《模式识别与人工智能》 EI CSCD 北大核心 2014年第3期272-280,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61070088 61379062) 湖南省重点学科建设项目 湖南省自然科学基金项目(No.10JJ3072) 湖南省教育厅项目(No.12C0378 11C1224) 湖南省科技厅项目(No.2011GK3063)资助
关键词 多目标优化 多目标进化算法 偏好 动态引导策略 Multi-objective Optimization, Multi-objective Evolutionary Algorithms, Preference,Dynamic Guided Strategy
  • 相关文献

参考文献27

  • 1Deb K. Multi-Objective Optimization Using Evolutionary Algorithms. Chichester, UK: John Wiley & Sons, 2001.
  • 2Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multi-objective Genetic Algorithm: NSGA-II. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.
  • 3Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report, TIK-Report 103. Lausanne, Switzerland: Swiss Federal Institute of Technology, 2001.
  • 4Knowles J D, Come D W. Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation, 2000, 8(2): 149-172.
  • 5Davarynejad M, Vrancken J, Van den Berg J, et al. A Fitness Granulation Approach for Large-Scale Structural Design Optimization / / Chiong R, Weise T, Michalewicz Z, eds. Variants of Evolutionary Algorithms for Real-World Applications. Berlin, Germany: Springer-Verlag, 2012.
  • 6李密青,郑金华.一种多目标进化算法解集分布广度评价方法[J].计算机学报,2011,34(4):647-664. 被引量:23
  • 7Sindhya K, Deb K, Miettinen K. Improving Convergence of Evolutionary Multi-objective Optimization with Local Search: A Concurrent-Hybrid Algorithm. Natural Computing, 2011, 10 (4): 1407- 1430.
  • 8崔逊学,林闯.一种基于偏好的多目标调和遗传算法(英文)[J].软件学报,2005,16(5):761-770. 被引量:23
  • 9Deb K, Sundar J, Rao NUB, et al. Reference Point Based Multiobjective Optimization Using Evolutionary Algorithms. International Journal of Computational Intelligence Research, 2006, 2 ( 3 ) : 273- 286.
  • 10Fonseca C M, Fleming P 1. Multi-objective Genetic Algorithms Made Easy: Selection Sharing and Mating Restriction / / P-oc of the 1 st IEEE International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications. Sheffield, UK, 1995: 42-52.

二级参考文献33

  • 1夏蔚军,吴智铭.基于混合微粒群优化的多目标柔性Job-shop调度[J].控制与决策,2005,20(2):137-141. 被引量:35
  • 2雷德明,吴智铭.基于个体密集距离的多目标进化算法[J].计算机学报,2005,28(8):1320-1326. 被引量:23
  • 3李康顺,李元香,康立山,吴志健.一种基于输运理论的多目标演化算法[J].计算机学报,2007,30(5):796-805. 被引量:11
  • 4Nanbo Jin, Yahya Rahmat-Samii. Advances in particle swarm optimization for antenna designs: Real-number, binary, single-objective and multiobjective implementations [J]. IEEE Trans on Antennas and Propagation, 2007, 55(3): 556-567.
  • 5Xiaohui Hu, Russell Eberhart. Multiobjeetive optimization using dynamic neighborhood particles swarm optimization [C]. Proc of Congress on Evolutionary Computation. Hawaiis, 2002: 1677-1681.
  • 6Jonathan E Fieldsend, Sameer Singh. A multi-objective algorithm based upon particle swarm optimization: An efficient data structure and turbulence[C]. Proc of the 2002 UK Workshop on Computational Intelligence. Manchester, 2002: 37-44.
  • 7Carlos A Coello Coello, Maximino MOPSO: A proposal for multiple swarm optimization [C]. Proc Evolutionary Computation. Hawaiis, Salazar Lechuga. objective particle of Congress on 2002: 1051-1056.
  • 8Miettinen K. Nonlinear multiobjective optimization[M]. Boston: Kluwer, 1999.
  • 9Kalyanmoy Deb. Solving goal programming problems using multi-objective genetic algorithms [C]. Proc of Congress on Evolutionary Computation. Washington, 1999: 77-83.
  • 10Cvetkovic D, Parmee I. Evolutionary design and multiobjective optimization [C]. Proc of the 6th European Congress on Intelligent Techniques and Soft Computing. Lille, 1998: 397-401.

共引文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部